Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.976 Render date: 2021-03-03T15:37:35.653Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces

Published online by Cambridge University Press:  02 July 2014

Fangjie Liu
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
Giovanni Ghigliotti
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2
James J. Feng
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2 Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
Chuan-Hua Chen
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
Corresponding

Abstract

Coalescing drops spontaneously jump out of plane on a variety of biological and synthetic superhydrophobic surfaces, with potential applications ranging from self-cleaning materials to self-sustained condensers. To investigate the mechanism of self-propelled jumping, we report three-dimensional phase-field simulations of two identical spherical drops coalescing on a flat surface with a contact angle of 180°. The numerical simulations capture the spontaneous jumping process, which follows the capillary–inertial scaling. The out-of-plane directionality is shown to result from the counter-action of the substrate to the impingement of the liquid bridge between the coalescing drops. A viscous cutoff to the capillary–inertial velocity scaling is identified when the Ohnesorge number of the initial drops is around 0.1, but the corresponding viscous cutoff radius is too small to be tested experimentally. Compared to experiments on both superhydrophobic and Leidenfrost surfaces, our simulations accurately predict the nearly constant jumping velocity of around 0.2 when scaled by the capillary–inertial velocity. By comparing the simulated drop coalescence processes with and without the substrate, we attribute this low non-dimensional velocity to the substrate intercepting only a small fraction of the expanding liquid bridge.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Present address: Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France.

References

Andrieu, C., Beysens, D. A., Nikolayev, V. S. & Pomeau, Y. 2002 Coalescence of sessile drops. J. Fluid Mech. 453, 427438.CrossRefGoogle Scholar
Basaran, O. A. 1992 Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169198.CrossRefGoogle Scholar
Benilov, E. S. & Vynnycky, M. 2013 Contact lines with a 180° contact angle. J. Fluid Mech. 718, 481506.CrossRefGoogle Scholar
Boreyko, J. B. & Chen, C. H. 2009 Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501.CrossRefGoogle ScholarPubMed
Boreyko, J. B. & Chen, C. H. 2010 Self-propelled jumping drops on superhydrophobic surfaces. Phys. Fluids 22, 091110.CrossRefGoogle Scholar
Boreyko, J. B. & Chen, C. H. 2013 Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. Intl J. Heat Mass Transfer 61, 409418.CrossRefGoogle Scholar
Boreyko, J. B. & Collier, C. P. 2013 Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 16181627.CrossRefGoogle ScholarPubMed
Boreyko, J. B., Zhao, Y. & Chen, C. H. 2011 Planar jumping-drop thermal diodes. Appl. Phys. Lett. 99, 234105.CrossRefGoogle Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.CrossRefGoogle Scholar
Celestini, F., Frisch, T. & Pomeau, Y. 2012 Take off of small Leidenfrost droplets. Phys. Rev. Lett. 109, 034501.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Chen, C. H., Cai, Q., Tsai, C., Chen, C. L., Xiong, G., Yu, Y. & Ren, Z. F. 2007 Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173108.Google Scholar
Cheng, J., Vandadi, A. & Chen, C. L. 2012 Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Dietz, C., Rykaczewski, K., Fedorov, A. G. & Joshi, Y. 2010 Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl. Phys. Lett. 97, 033104.CrossRefGoogle Scholar
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.CrossRefGoogle Scholar
Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C. V. & Wang, E. N. 2012 Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 28, 1442414432.CrossRefGoogle ScholarPubMed
Feng, J., Pang, Y., Qin, Z., Ma, R. & Yao, S. 2012 Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4, 66186625.CrossRefGoogle Scholar
Gao, P. & Feng, J. J. 2009 Enhanced slip on a patterned substrate due to depinning of contact line. Phys. Fluids 21, 102102.CrossRefGoogle Scholar
Ghigliotti, G., Zhou, C. & Feng, J. J. 2013 Simulations of the breakup of liquid filaments on a partially wetting solid substrate. Phys. Fluids 25, 072102.CrossRefGoogle Scholar
He, M., Zhou, X., Zeng, X., Cui, D., Zhang, Q., Chen, J., Li, H., Wang, J., Cao, Z., Song, Y. & Jiang, L. 2012 Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. Soft Matt. 8, 66806683.CrossRefGoogle Scholar
Helbig, R., Nickerl, J., Neinhuis, C. & Werner, C. 2011 Smart skin patterns protect springtails. PLoS One 6, e25105.CrossRefGoogle ScholarPubMed
Hernández-Sánchez, J. F., Lubbers, L. A., Eddi, A. & Snoeijer, J. H. 2012 Symmetric and asymmetric coalescence of drops on a substrate. Phys. Rev. Lett. 109, 184502.CrossRefGoogle ScholarPubMed
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Kapur, N. & Gaskell, P. H. 2007 Morphology and dynamics of droplet coalescence on a surface. Phys. Rev. E 75, 056315.CrossRefGoogle ScholarPubMed
Kollera, M. & Grigull, U. 1969 Über das Abspringen von Tropfen bei der Kondensation von Quecksilber (The bouncing off phenomenon of droplets with condensation of mercury). Wärme- und Stoffübertragung (Heat Mass Transfer) 2, 3135.CrossRefGoogle Scholar
Lee, M. W., Kang, D. K., Yoon, S. S. & Yarin, A. L. 2012 Coalescence of two drops on partially wettable substrates. Langmuir 28, 37913798.CrossRefGoogle Scholar
Leidenfrost, J. G. 1756 De Aquae Communis Nonnullis Qualitatibus Tractatus. Johann Straube, Duisburg (translation: 1966 Intl J. Heat Mass Transfer 9, 1153–1166).Google Scholar
Liu, F., Ghigliotti, G., Feng, J. J. & Chen, C.-H. 2014a Self-propelled jumping upon drop coalescence on Leidenfrost surfaces. J. Fluid Mech. 752, 2238.CrossRefGoogle Scholar
Liu, T. Q., Sun, W., Sun, X. Y. & Ai, H. R. 2012 Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf. A 414, 366374.CrossRefGoogle Scholar
Liu, X., Cheng, P. & Quan, X. 2014b Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Intl J. Heat Mass Transfer 73, 195200.CrossRefGoogle Scholar
Lv, C., Hao, P., Yao, Z., Song, Y., Zhang, X. & He, F. 2013 Condensation and jumping relay of droplets on lotus leaf. Appl. Phys. Lett. 103, 021601.CrossRefGoogle Scholar
Menchaca-Rocha, A., Martínez-Dávalos, A., Núñez, R., Popinet, S. & Zaleski, S. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63, 046309.CrossRefGoogle ScholarPubMed
Mertaniemi, H., Forchheimer, R., Ikkala, O. & Ras, R. H. A. 2012 Rebounding droplet–droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic. Adv. Mater. 24, 57385743.CrossRefGoogle ScholarPubMed
Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J. & Wang, E. N. 2013 Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179187.CrossRefGoogle ScholarPubMed
Miljkovic, N., Enright, R. & Wang, E. N. 2012 Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 17761785.CrossRefGoogle ScholarPubMed
Miljkovic, N. & Wang, E. N. 2013 Condensation heat transfer on superhydrophobic surfaces. MRS Bull. 38, 397406.CrossRefGoogle Scholar
Mognetti, B. M., Kusumaatmaja, H. & Yeomans, J. M. 2010 Drop dynamics on hydrophobic and superhydrophobic surfaces. Faraday Discuss. 146, 153165.CrossRefGoogle ScholarPubMed
Nam, Y., Kim, H. & Shin, S. 2013 Energy and hydrodynamic analyses of coalescence-induced jumping droplets. Appl. Phys. Lett. 103, 161601.CrossRefGoogle Scholar
Nilsson, M. A. & Rothstein, J. P. 2011 The effect of contact angle hysteresis on droplet coalescence and mixing. J. Colloid Interface Sci. 363, 646654.CrossRefGoogle ScholarPubMed
Orme, M. 1997 Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci. 23, 6579.CrossRefGoogle Scholar
Paulsen, J. D., Burton, J. C. & Nagel, S. R. 2011 Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett. 106, 114501.CrossRefGoogle ScholarPubMed
Peng, B., Wang, S., Lan, Z., Xu, W., Wen, R. & Ma, X. 2013 Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Appl. Phys. Lett. 102, 151601.CrossRefGoogle Scholar
Qian, J. & Law, C. K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.CrossRefGoogle Scholar
Quéré, D. 2005 Non-sticking drops. Rep. Prog. Phys. 68, 24952532.CrossRefGoogle Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.CrossRefGoogle Scholar
Reid, W. H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Maths 18, 8689.CrossRefGoogle Scholar
Reyssat, M., Richard, D., Clanet, C. & Quéré, D. 2010 Dynamical superhydrophobicity. Faraday Discuss. 146, 1933.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50, 769775.CrossRefGoogle Scholar
Ristenpart, W. D., McCalla, P. M., Roy, R. V. & Stone, H. A. 2006 Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett. 97, 064501.CrossRefGoogle ScholarPubMed
Rykaczewski, K., Osborn, W. A., Chinn, J., Walker, M. L., Scott, J. H. J., Jones, W., Hao, C., Yao, S. & Wang, Z. 2012a How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matt. 8, 87868794.CrossRefGoogle Scholar
Rykaczewski, K., Paxson, A. T., Anand, S., Chen, X., Wang, Z. & Varanasi, K. K. 2012b Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881891.CrossRefGoogle ScholarPubMed
Sprittles, J. E. & Shikhmurzaev, Y. D. 2012 Coalescence of liquid drops: different models versus experiment. Phys. Fluids 24, 122105.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005 The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.CrossRefGoogle Scholar
Trinh, E. & Wang, T. G. 1982 Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315338.CrossRefGoogle Scholar
Tsai, P., Hendrix, M. H. W., Dijkstra, R. R. M., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high weber number. Soft Matt. 7, 1132511333.CrossRefGoogle Scholar
Wang, F. C., Yang, F. & Zhao, Y. P. 2011 Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett. 98, 053112.Google Scholar
Watson, J. A., Cribb, B. W., Hu, H. M. & Watson, G. S. 2011 A dual layer hair array of the brown lacewing: repelling water at different length scales. Biophys. J. 100, 11491155.CrossRefGoogle Scholar
Wisdom, K. M., Watson, J. A., Qu, X., Liu, F., Watson, G. S. & Chen, C. H. 2013 Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 110, 79927997.CrossRefGoogle ScholarPubMed
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.CrossRefGoogle Scholar
Yue, P., Zhou, C. & Feng, J. J. 2006a A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18, 102102.CrossRefGoogle Scholar
Yue, P., Zhou, C. & Feng, J. J. 2007 Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223, 19.CrossRefGoogle Scholar
Yue, P., Zhou, C., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006b Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 4767.CrossRefGoogle Scholar
Zhang, Q., He, M., Chen, J., Wang, J., Song, Y. & Jiang, L. 2013 Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 45164518.CrossRefGoogle ScholarPubMed
Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229, 498511.CrossRefGoogle Scholar

Liu et al. supplementary movie

Coalescence on the substrate (figure 3a): Oh=0.00375, xz view (duration T*=6).

Video 1 MB

Liu et al. supplementary movie

Coalescence in the air (figure 3b): Oh=0.00375, xz/xy view (duration T*=6).

Video 2 MB

Liu et al. supplementary movie

Coalescence in the air (figure 3b): Oh=0.00375, xz/xy view (duration T*=6).

Video 3 MB

Liu et al. supplementary movie

Coalescence on the substrate (figure 4a): Oh=0.00375, yz view (duration T*=6).

Video 2 MB

Liu et al. supplementary movie

Coalescence on the substrate (figure 4b): Oh=0.00375, xy view (duration T*=6).

Video 1 MB

Liu et al. supplementary movie

Coalescence on the substrate (figure 9a): Oh=0.375, xz view (duration T*=8).

Video 2 MB

Liu et al. supplementary movie

Coalescence in the air (figure 9b): Oh=0.375, xz/xy view (duration T*=8).

Video 2 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 1059 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *