Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 25.656 Render date: 2021-03-08T01:56:02.336Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Axial evolution of forced helical flame and flow disturbances

Published online by Cambridge University Press:  05 April 2018

Travis E. Smith
Affiliation:
Department of Aerospace Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA
Christopher M. Douglas
Affiliation:
Department of Mechanical Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA
Benjamin L. Emerson
Affiliation:
Department of Aerospace Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA
Timothy C. Lieuwen
Affiliation:
Department of Aerospace Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA
Corresponding
E-mail address:

Abstract

This paper presents 5 kHz stereo particle image velocimetry and OH planar laser induced fluorescence measurements of transversely forced swirl flames. The presence of transverse forcing on this naturally unstable flow both influences the natural instabilities, as well as amplifies disturbances that may not necessarily manifest themselves during natural oscillations. By manipulating the structure of the acoustic forcing field, both axisymmetric and helical modes are preferentially excited away from the frequency of natural instability. The paper presents a method for spatially interpolating the phase locked $r{-}z$ and $r{-}\unicode[STIX]{x1D703}$ planar velocity and flame position data, extracting the full three-dimensional structure of the helical disturbances. These helical disturbances are also decomposed into symmetric and anti-symmetric disturbances about the jet core, showing the subsequent axial evolution (in magnitude and phase) of each of these underlying disturbances. It is shown that out-of-phase acoustic forcing excites $m=\pm 1$ modes, but the flow field preferentially amplifies the counter-winding, co-rotating helical disturbance over the co-winding, counter-rotating helical disturbance. This causes the flow and flame to transition from a transverse flapping near the jet exit to a precessing motion further downstream. In contrast, in-phase forcing promotes axisymmetric $m=0$ disturbances which dominate the flow field over the entire axial domain. In both cases, the amplitudes of the anti-symmetric disturbances about the jet core grow with downstream distance before saturating and decaying, while the symmetric disturbances appear nearly negligible. It is suggested that this saturation and decay is due to linear effects (e.g. a negative spatial growth rate), rather than nonlinear interactions.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Acharya, V. S., Shin, D. H. & Lieuwen, T. 2013 Premixed flames exrefd by helical disturbances: flame wrinkling and heat release oscillations. J. Propul. Power 29, 12821291.10.2514/1.B34883CrossRefGoogle Scholar
Aguilar, M., Malanoski, M., Adhitya, G., Emerson, B., Acharya, V., Noble, D. & Lieuwen, T. 2015 Helical flow disturbances in a multinozzle combustor. Trans. ASME J. Engng Gas Turbines Power 137 (9), 091507.10.1115/1.4029696CrossRefGoogle Scholar
Arndt, C., Steinberg, A., Boxx, I., Meier, W., Aigner, M. & Carter, C. 2010 Flow-field and flame dynamics of a gas turbine model combustor during transition between thermo-acoustically stable and unstable states. In Turbo Expo. ASME.Google Scholar
Billant, P., Chomaz, J. M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.10.1017/S0022112098002870CrossRefGoogle Scholar
Blimbaum, J., Zanchetta, M., Akin, T., Acharya, V., O’Connor, J., Noble, D. R. & Lieuwen, T. 2012 Transverse to longitudinal acoustic coupling processes in annular combustion chambers. Intl J. Spray Combust. Dyn. 4, 275297.10.1260/1756-8277.4.4.275CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 2. The flow resulting from the interaction between two waves. J. Fluid Mech. 176, 221235.10.1017/S0022112087000636CrossRefGoogle Scholar
Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. & Cheng, R. K. 2012 A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. Methane flames. Combust. Flame 159, 275290.10.1016/j.combustflame.2011.06.016CrossRefGoogle Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 13851400.10.1063/1.862033CrossRefGoogle Scholar
Fanaca, D., Alemela, P. R., Hirsch, C. & Sattelmayer, T. 2010 Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. Engng Gas Turbines Power 132 (7), 071502.Google Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222224.10.1017/S0022112062001184CrossRefGoogle Scholar
Ghirardo, G. & Juniper, M. P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469 (2157), 20130232.10.1098/rspa.2013.0232CrossRefGoogle Scholar
Gupta, A. K., Lilley, D. G. & Syred, N. 1984 Swirl Flows. Abacus Press.Google Scholar
Hauser, M., Lorenz, M. & Sattelmayer, T. 2011 Influence of transversal acoustic excitation of the burner approach flow on the flame structure. Trans. ASME J. Engng Gas Turbines Power 133, 041501.Google Scholar
Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463476.10.1017/S0022112062001366CrossRefGoogle Scholar
Huang, Y., Wang, S. W. & Yang, V. 2006 Systematic analysis of lean-premixed swirl-stabilized combustion. AIAA J. 44, 724740.10.2514/1.15382CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293364.10.1016/j.pecs.2009.01.002CrossRefGoogle Scholar
Juniper, M. P. 2012 Absolute and convective instability in gas turbine fuel injectors. In Proceedings of ASME Turbo Expo 2012.Google Scholar
Juniper, M. P., Tammisola, O. L. & Lundell, F. 2011 The local and global stability of confined planar wakes at intermediate Reynolds number. J. Fluid Mech. 686, 218238.10.1017/jfm.2011.324CrossRefGoogle Scholar
Kashinath, K., Hemchandra, S. & Juniper, M. P. 2013 Nonlinear thermoacoustics of ducted premixed flames: the influence of perturbation convection speed. Combust. Flame 160, 28562865.10.1016/j.combustflame.2013.06.019CrossRefGoogle Scholar
Lacarelle, A., Faustmann, T., Greenblatt, D., Paschereit, C. O., Lehmann, O., Luchtenburg, D. M. & Noack, B. R. 2009 Spatiotemporal characterization of a conical swirler flow field under strong forcing. Trans. ASME J. Engng Gas Turbines Power 131 (3), 031504.10.1115/1.2982139CrossRefGoogle Scholar
Liang, H. Z. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.10.1017/S0022112004002629CrossRefGoogle Scholar
Lieuwen, T. 2012 Unsteady Combustor Physics. Cambridge University Press.10.1017/CBO9781139059961CrossRefGoogle Scholar
Long, T. A. & Petersen, R. A. 1992 Controlled interactions in a forced axisymmetric jet. Part 1. The distortion of the mean flow. J. Fluid Mech. 235, 3755.10.1017/S0022112092001010CrossRefGoogle Scholar
Malanoski, M., Aguilar, M., Shin, D. H. & Lieuwen, T. 2014 Flame leading edge and flow dynamics in a swirling, lifted flame. Combust. Sci. Technol. 186, 18161843.10.1080/00102202.2014.923410CrossRefGoogle Scholar
Manoharan, K., Emerson, B., Smith, T. E., Douglas, C. M., Lieuwen, T. & Hemchandra, S. 2017 Velocity field response of a forced swirl stabilized premixed flame. In ASME Turbo Expo 2017: Turbine Technical Conference and Exposition.Google Scholar
Manoharan, K., Hansford, S., O’Connor, J. & Hemchandra, S. 2015 Instability mechanism in a swirl flow combustor: precession of vortex core and influence of density gradient. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.Google Scholar
O’Connor, J., Acharya, V. & Lieuwen, T. 2015 Transverse combustion instabilities: acoustics, hydrodynamics, and flame dynamics. Prog. Energy Combust. Sci. 49, 139.10.1016/j.pecs.2015.01.001CrossRefGoogle Scholar
O’Connor, J. & Lieuwen, T. 2012a Further characterization of the disturbance field in a transversely exrefd swirl-stabilized flame. Trans. ASME J. Engng Gas Turbines Power 134 (1), 011501.10.1115/1.4004186CrossRefGoogle Scholar
O’Connor, J. & Lieuwen, T. 2012b Recirculation zone dynamics of a transversely exrefd swirl flow and flame. Phys. Fluids 24 (7), 28932900.10.1063/1.4731300CrossRefGoogle Scholar
Oberleithner, K., Paschereit, C. O. & Wygnanski, I. 2014 On the impact of swirl on the growth of coherent structures. J. Fluid Mech. 741, 156199.10.1017/jfm.2013.669CrossRefGoogle Scholar
Oberleithner, K., Schimek, S. & Paschereit, C. O. 2015 Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: a linear stability analysis. Combust. Flame 162, 8699.10.1016/j.combustflame.2014.07.012CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.10.1017/jfm.2011.141CrossRefGoogle Scholar
Qadri, U. A., Mistry, D. & Juniper, M. P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.10.1017/jfm.2013.34CrossRefGoogle Scholar
Rosa, A. J. D., Samarasinghe, J., Peluso, S. J., Quay, B. D. & Santavicca, D. A. 2016 Flame area fluctuation measurements in velocity-forced premixed gas turbine flames. Trans. ASME J. Engng Gas Turbines Power 138 (4), 041507.Google Scholar
Roy, S., Yi, T., Jiang, N., Gunaratne, G. H., Chterev, I., Emerson, B., Lieuwen, T., Caswell, A. W. & Gord, J. R. 2017 Dynamics of robust structures in turbulent swirling reacting flows. J. Fluid Mech. 816, 554585.10.1017/jfm.2017.71CrossRefGoogle Scholar
Rukes, L., Sieber, M., Paschereit, C. O. & Oberleithner, K. 2016 The impact of heating the breakdown bubble on the global mode of a swirling jet: experiments and linear stability analysis. Phys. Fluids 28 (10), 104102.10.1063/1.4963274CrossRefGoogle Scholar
Rusak, Z., Wang, S., Xu, L. & Taylor, S. 2012 On the global nonlinear stability of a near-critical swirling flow in a long finite-length pipe and the path to vortex breakdown. J. Fluid Mech. 712, 295326.10.1017/jfm.2012.420CrossRefGoogle Scholar
Smith, T. E., Emerson, B., Proscia, W. & Lieuwen, T. 2018 Role of induced axial acoustics in transverse acoustic flame response. Combust. Flame; (in press).10.1016/j.combustflame.2017.12.035CrossRefGoogle Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12, 221233.10.1016/0894-1777(95)00086-0CrossRefGoogle Scholar
Steinberg, A., Boxx, I., Stöhr, M., Meier, W. & Carter, C. 2012 Effects of flow structure dynamics on thermoacoustic instabilities in swirl-stabilized combustion. AIAA J. 50 (4), 952967.10.2514/1.J051466CrossRefGoogle Scholar
Steinberg, A. M., Arndt, C. M. & Meier, W. 2013 Parametric study of vortex structures and their dynamics in swirl-stabilized combustion. Proc. Combust. Inst. 34 (2), 31173125.10.1016/j.proci.2012.05.015CrossRefGoogle Scholar
Syred, N. 2006 A review of oscillation mechanisms and the role of the precessing vortex core (pvc) in swirl combustion systems. Prog. Energy Combust. Sci. 32, 93161.10.1016/j.pecs.2005.10.002CrossRefGoogle Scholar
Tammisola, O. & Juniper, M. P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.10.1017/jfm.2016.86CrossRefGoogle Scholar
Terhaar, S., Cosic, B., Oliver Paschereit, C. & Oberleithner, K. 2014 Impact of shear flow instabilities on the magnitude and saturation of the flame response. Trans. ASME J. Engng Gas Turbines Power 136, 071502.Google Scholar
Umeh, C. O. U., Rusak, Z. & Gutmark, E. 2012 Vortex breakdown in a swirl-stabilized combustor. J. Propul. Power 28, 10371051.10.2514/1.B34377CrossRefGoogle Scholar
Wang, S. & Rusak, Z. 1996 On the stability of non-columnar swirling flows. Phys. Fluids 8, 10171023.10.1063/1.868878CrossRefGoogle Scholar
Wang, S. X., Rusak, Z., Gong, R. & Liu, F. 2016 On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe. J. Fluid Mech. 797, 284321.10.1017/jfm.2016.223CrossRefGoogle Scholar
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10, 181193.10.1007/BF00190388CrossRefGoogle Scholar
Worth, N. A. & Dawson, J. R. 2013a Modal dynamics of self-exrefd azimuthal instabilities in an annular combustion chamber. Combust. Flame 160, 24762489.10.1016/j.combustflame.2013.04.031CrossRefGoogle Scholar
Worth, N. A. & Dawson, J. R. 2013b Self-exrefd circumferential instabilities in a model annular gas turbine combustor: global flame dynamics. Proc. Combust. Inst. 34 (2), 31273134.10.1016/j.proci.2012.05.061CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 15
Total number of PDF views: 268 *
View data table for this chart

* Views captured on Cambridge Core between 05th April 2018 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Axial evolution of forced helical flame and flow disturbances
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Axial evolution of forced helical flame and flow disturbances
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Axial evolution of forced helical flame and flow disturbances
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *