Skip to main content Accessibility help

Monitoring residue concentrations in milk from farm and throughout a milk powder manufacturing process

  • Lizandra F. Paludetti (a1) (a2), Alan L. Kelly (a2), Bernadette O'Brien (a1) and David Gleeson (a1)


The experiments reported in this research paper aimed to investigate differences in the levels of chlorate (CHLO), perchlorate (PCHLO), trichloromethane (TCM) and iodine residues in bulk tank (BT) milk produced at different milk production periods, and to monitor those levels throughout a skim milk powder (SMP) production chain (BTs, collection tankers [CTs], whole milk silo [WMS] and skim milk silo [SMS]). Chlorate, PCHLO and iodine were measured in SMP, while TCM was measured in the milk cream. The CHLO, TCM and iodine levels in the mid-lactation milk stored in the WMS were lower than legislative and industrial specifications (0.0100 mg/kg, 0.0015 mg/kg and 150 µg/l, respectively). However, in late-lactation, these levels were numerically higher than the mid-lactation levels and specifications. Trichloromethane accumulated in the cream portion after separation. Perchlorate was not detected in any of the samples. Regarding iodine, the levels in mid-lactation reconstituted SMP were higher than that required by manufacturers (100 µg/l), indicating that the levels in milk should be lower than 142 µg/l. The higher residue levels observed in late-lactation could be related to the low milk volume produced during that period and changes in sanitation practices, while changes in feed management could have affected iodine levels. This study could assist in controlling and setting limits for CHLO, TCM and iodine levels in milk, ensuring premium quality dairy products.


Corresponding author

Author for correspondence: David Gleeson, Email:


Hide All
Asami, M, Yoshida, K, Kosaka, K and Matsui, Y (2013) Contribution of tap water to chlorate and perchlorate intake: a market basket study. Science of the Total Environment 463–464, 199208.10.1016/j.scitotenv.2013.05.097
BS EN 15111:2007 (2007) Foodstuffs, Determination of trace elements, Determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry). European Committee for standardization, Brussels, Belgium.
Delange, F, Dunn, JT and Glinoer, D (1993) Iodine Deficiency in Europe: a Continuing Concern, New York, USA: Plenum Press, p. 478.
EU Regulation 396 (2005) Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/ECC. Official Journal of the European Union L70, 116.
European Food Safety Authority (EFSA) (2005) Opinion of the scientific panel on additives and products or substances used in animal feed on the request from the commission on the use of iodine in feeding stuffs. EFSA Journal 168, 142.
European Food Safety Authority (EFSA) (2015) Risks for public related to the presence of chlorates in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal 13, 1103.
European Union Reference Laboratories for Residues of Pesticides – Single Residue Methods (EURL-SRM) (2015) Quick Method for the Analysis of numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-Method). Available at (Accessed 22 February 2018).
Flachowsky, G, Franke, K, Meyer, U, Leiterer, M and Schone, F (2014) Influencing factors on iodine content of cow milk. European Journal of Nutrition 53, 351365.
Garcia-Villanova, RJ, Leite, MVOD, Hierro, JMH, de Castro Alfageme, S and Hernandez, CG (2010) Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents: tracing their origins. Science and the Total Environment 408, 26162620.10.1016/j.scitotenv.2010.03.011
Gleeson, D (2016) Cleaning protocols for milking equipment to ensure low bacterial counts and minimum residues. Available at (Accessed 31 May 2018).
Gleeson, D, O'Brien, B and Jordan, K (2013) The effect of using non-chlorine products for cleaning and sanitising milking equipment on bacterial numbers and residues in milk. International Journal of Dairy Technology 66, 182188.
Gordon, G and Tachiyashiki, S (1991) Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/ chlorite ion reaction at pH 6–10. Environmental Science and Technology 25, 468474.10.1021/es00015a014
Hubbert, WT, Hagstad, HV, Spangler, E, Hinton, MH and Hughes, KL (1996) Food Safety and Quality Assurance: Foods of Animal Origin, 2nd Edn. Iowa USA: Iowa State University Press.
International Agency for Research on Cancer (ICAR) (1999) Chloroform. Pages 131–182 in Monographs on the evaluation of carcinogenic risks to humans – Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances, v 73, Geneva, Switzerland: IARC Press.
Leung, AM and Braverman, LE (2014) Consequences of excess iodine. Nature Reviews Endocrinology 10, 136142.10.1038/nrendo.2013.251
Magowan, E, Fearon, AM and Patterson, DC (2010) The effect of supplementary grass silage and standard concentrate on milk fat fatty acid composition and iodine value when cows are fed a whole rapeseed-based concentrate at pasture. Irish Journal of Agricultural and Food Research 49, 129139.
O'Brien, B, Mehra, R and Connolly, JF (1999) Seasonal variation in the composition of Irish manufacturing and retail milks IV minerals and trace elements. Irish Journal of Agricultural and Food Research 38, 8799.
O'Brien, B, Gleeson, D and Jordan, K (2013) Iodine concentrations in milk. Irish Journal of Agricultural and Food Research 52, 209216.
Paludetti, LF, Kelly, AL, O'Brien, B, Jordan, K and Gleeson, D (2019) Microbiological quality of milk from farms to milk powder manufacture: an industrial case study. Journal of Dairy Research 86, 242247.10.1017/S0022029919000347
Resch, P and Guthy, K (1999) Chloroform in milk and dairy products. Part A: analysis of chloroform using static headspace gas chromatography. Deutsche Lebensmittel-Rundschau 95, 418423.
Ryan, S, Gleeson, D, Jordan, K, Furey, A, O'Sullivan, K and O'Brien, B (2013) Strategy for the reduction of trichloromethane residue levels in farm bulk milk. Journal of Dairy Research 80, 184189.10.1017/S0022029913000113
SAS (2016) Version 9.3, Cary, NC, USA: SAS Institute Inc.
Tiefel, P and Guthy, K (1997) Model tests for the formation of TCM by chlorine containing cleaning and disinfection products. Milchwissenschaft 52, 686691.
US National Research Council (2001) Nutrient Requirements of Dairy Cattle. Washington, DC, USA: National Academy Press. Available at (Accessed 14 June 2018).


Type Description Title
Supplementary materials

Paludetti et al. supplementary material
Paludetti et al. supplementary material 1

 PDF (330 KB)
330 KB

Monitoring residue concentrations in milk from farm and throughout a milk powder manufacturing process

  • Lizandra F. Paludetti (a1) (a2), Alan L. Kelly (a2), Bernadette O'Brien (a1) and David Gleeson (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed