Consider the problem of drawing random variates (X1, …, Xn) from a distribution where the marginal of each Xi is specified, as well as the correlation between every pair Xi and Xj. For given marginals, the Fréchet-Hoeffding bounds put a lower and upper bound on the correlation between Xi and Xj. Any achievable correlation between Xi and Xj
is a convex combination of these bounds. We call the value λ(Xi, Xj) ∈ [0, 1] of this convex combination the convexity parameter of (Xi, Xj) with λ(Xi, Xj) = 1 corresponding to the upper bound and maximal correlation. For given marginal distributions functions F1, …, Fn of (X1, …, Xn), we show that λ(Xi, Xj) = λij
if and only if there exist symmetric Bernoulli random variables (B1, …, Bn) (that is {0, 1} random variables with mean ½) such that λ(Bi, Bj) = λij. In addition, we characterize completely the set of convexity parameters for symmetric Bernoulli marginals in two, three, and four dimensions.