Skip to main content Accessibility help
×
Home

A Powdery Mildew Fungus Levels the Playing Field for Garlic Mustard (Alliaria petiolata) and a North American Native Plant

  • Don Cipollini (a1) and Stephanie Enright (a1)

Abstract

When exposed to native or introduced herbivores and pathogens, invasive plants may become weaker competitors with more benign impacts on individual plants and plant communities. In a greenhouse pot study, we tested whether the presence of powdery mildew disease caused by Erysiphe cruciferarum could alter the competitive impact of garlic mustard on Impatiens pallida, a North American native understory plant. Target I. pallida plants were grown alone or with one, two, or three garlic mustard neighbors. Half of the pots exposed to garlic mustard were inoculated with conidia of E. cruciferarum. Competition with garlic mustard moderately affected aboveground growth of I. pallida, particularly at high garlic mustard density, but it strongly reduced seed output across all densities. In contrast, inoculation of garlic mustard plants with E. cruciferarum completely abolished their competitive impact on seed output of I. pallida across all densities, independent of effects on aboveground growth of target plants. This effect was likely due to alteration in the ability of garlic mustard to compete for belowground resources. Even without killing garlic mustard, these results indicate that the presence of powdery mildew disease in the field will likely dampen the competitive impact of garlic mustard on individual plants and plant communities. Escape from such attackers has likely contributed to the invasiveness and impacts of garlic mustard in North America.

Copyright

Corresponding author

Corresponding author's E-mail: don.cipollini@wright.edu

References

Hide All
Blossey, B. and Nötzold, R. 1995. Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. J. Ecol 83:887889.
Blossey, B., Nuzzo, V., Hinz, H., and Gerber, E. 2001. Developing biological control of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat. Areas J 21:357367.
Bossdorf, O., Prati, D., Auge, H., and Schmid, B. 2004. Reduced competitive ability in an invasive plant. Ecol. Lett 7:346353.
Brooks, D. H. 1972. Observations of the effects of mildew, Erysiphe graminis, on growth of spring and winter barley. Ann. Appl. Bot 70:149156.
Callaway, R. M., Cipollini, D., Barto, E. K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:10431055.
Callaway, R. M. and Ridenour, W. M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ 2:436444.
Carlson, A. M. 2002. Effects of Herbicide on Alliaria petiolata (Garlic Mustard) and Subsequent Effects on Native Plants in the Old-Growth and Second-Growth Forests of a Southwestern Ohio Nature Preserve. Masters thesis. Oxford, OH Miami University.
Carlson, A. M. and Gorchov, D. L. 2004. Effects of herbicide on the invasive biennial Alliaria petiolata (garlic mustard) and initial responses of native plants in a southwestern Ohio forest. Restor. Ecol 12:559567.
Carpenter, D. and Cappuccino, N. 2005. Herbivory, time since introduction and the invasiveness of exotic plants. J. Ecol 93:315321.
Cipollini, D. and Gruner, B. 2007. Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata . J. Chem. Ecol 33:8594.
Cipollini, D., Mbagwu, J., Hillstrom, C., Barto, E. K., and Enright, S. 2005. Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata . J. Chem. Ecol 31:12431255.
Cipollini, K. A., McClain, G. Y., and Cipollini, D. 2008. Separating effects of allelopathy and shading by Alliaria petiolata and Lonicera maackii on growth, reproduction and survival of Impatiens capensis . Am. Midl. Nat 160:117128.
Davis, A. S., Landis, D. A., Nuzzo, V., Blossey, B., Gerber, E., and Hinz, H. L. 2006. Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata). Ecol. Appl 16:23992410.
Durka, W., Bossdorf, O., Prati, D., and Auge, H. 2005. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol 14:16971706.
Ellis, M. B. and Ellis, J. P. 1997. Microfungi on Land Plants. Slough, UK Richmond Publishing.
Elton, C. S. 1958. The Ecology of Invasions by Animals and Plants. London, UK Methuen.
Enright, S. and Cipollini, D. 2007. Infection by powdery mildew Erysiphe cruciferarum (Erysiphacaeae) strongly affects growth and fitness of garlic mustard Alliaria petiolata (Brassicaceae). Am. J. Bot 94:18131820.
Evans, J. A. and Landis, D. A. 2007. Pre-release monitoring of Alliaria petiolata (garlic mustard) invasions and the impacts of extant natural enemies in southern Michigan forests. Biol. Control 42:300307.
Gerber, E., Hinz, H. L., and Blossey, B. 2007. Impact of the belowground herbivore and potential biological control agent, Ceutorhynchus scrobicollis, on Alliaria petiolata performance. Biol. Control 42:355364.
Jenkyn, J. F. and Rowlinson, C. J. 1977. Effects of fungicides and insecticides on mildew, viruses, and root yields of Swedes. Plant Pathol 26:166174.
Keeler, M. S. and Chew, F. S. 2008. Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host. Oecologia 156:559568.
Koike, S. T. 1997. First report of powdery mildew, caused by Erysiphe cruciferarum, on broccoli raab in California. Plant Dis 81:1093.
Lehman, R. D. 1999. Multiflora rose, rose-rosette disease, and Phyllocoptes fructiphilus . Regul. Hortic 25:2530.
Levine, J. M., Vila, M., D'Antonio, C. M., Dukes, J. S., Grigulis, K., and Lavorel, S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond., Ser. B: Biol. Sci 270:775781.
McCarthy, B. C. 1997. Response of a forest understory community to experimental removal of an invasive nonindigenous plant (Alliaria petiolata, Brassicaceae). Pages 117130. In Luken, J. O. and Thieret, L. W. Assessment and Management of Plant Invasions. New York Springer-Verlag.
Meekins, J. F. and McCarthy, B. C. 1999. Competitive ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive nonindigenous forest herb. Int. J. Plant Sci 160:743752.
Meekins, J. F. and McCarthy, B. C. 2000. Responses of the biennial forest herb Alliaria petiolata to variation in population density, nutrient addition and light availability. J. Ecol 88:447463.
Meekins, J. F., Ballard, H. E. Jr., and McCarthy, B. C. 2001. Genetic variation and molecular biogeography of a North American invasive plant species (Alliaria petiolata, Brassicaceae). Int. J. Plant Sci 162:161169.
Nuzzo, V. A. 2002. Element Stewardship Abstract for Alliaria petiolata (Alliaria officinalis), Garlic Mustard. Arlington, VA Nature Conservancy.
Pardini, E. A., Drake, J. M., Chase, J. M., and Knight, T. M. 2009. Complex population dynamics and control of the invasive biennial Alliaria petiolata (garlic mustard). Ecol. Appl 19:387397.
Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot 91:285288.
Rebek, K. A. and O'Neil, R. J. 2005. Impact of simulated herbivory on Alliaria petiolata survival, growth, and reproduction. Biol. Control 34:283289.
Renwick, J. A. A., Zhang, W., Haribal, M., Attygalle, A. B., and Lopez, K. D. 2001. Dual chemical barriers protect a plant against different larval stages of an insect. J. Chem. Ecol 27:15751583.
Roberts, K. J. and Anderson, R. C. 2001. Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat 146:146152.
Schemske, D. W. 1984. Population structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual. Evolution 38:817832.
Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727731.
Susko, D. J. and Lovett-Doust, L. 2000. Plant-size and fruit-position effects on reproductive allocation in Alliaria petiolata (Brassicaceae). Can. J. Bot 78:13981407.
Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol 96:777783.

Keywords

Related content

Powered by UNSILO

A Powdery Mildew Fungus Levels the Playing Field for Garlic Mustard (Alliaria petiolata) and a North American Native Plant

  • Don Cipollini (a1) and Stephanie Enright (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.