Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T06:53:19.148Z Has data issue: false hasContentIssue false

Evaluation of the insecticidal properties of the green alga, Scenedesmus acutus against the Egyptian cotton leafworm Spodoptera littoralis (Boisd)

Published online by Cambridge University Press:  19 September 2011

A. Sharaby
Affiliation:
Pests and Plant Protection Department National Research Centre, Dokki, Cairo, Egypt
Z. A. Salama
Affiliation:
Botany Department National Research Centre, Dokki, Cairo, Egypt
M. Magd El-Din
Affiliation:
Pests and Plant Protection Department National Research Centre, Dokki, Cairo, Egypt
Farouk K. El-Baz
Affiliation:
Botany Department National Research Centre, Dokki, Cairo, Egypt
Get access

Abstract

Successive extraction of the green alga, Scenedesmus acutus 276–3a with different solvents indicated that the petroleum ether extract was the most repellent to the hatched larvae of Spodoptera littoralis. The application of spray emulsified 1 % petroleum ether extract inhibited egg laying. At 0.25% concentration the moths laid only 52.4 of their egg masses on the treated oviposition sites in comparison to the untreated control. Concentration of 1% was protective against the immature stage by hindering the third instar larvae to feed on treated leaf discs. In addition, the water emulsion of petroleum ether extract was insecticidal. The percentage mortality was directly proportional to the concentration applied and to the duration of exposure.

Résumé

L'extraction successive de l'alge verte Scenedesmus acutus 276-3a avec des different solvents montre, que l'extrait du l'ether fretrole e'tait le plus reperable aux larves obtenues de Spodoptera littoralis. Des concentrations different de l'extrait d'ether petrole etaient examines pour la diminution ovipositionale, l'activite contre le manger et l'ecaractere insecticide contre les insectes qui attacquent les feuilles du cotton Spodoptera littoralis. Les resultats obtenus montrent que 1 % concentration de l'eau emulsifie de l'extrait de 1'ether petrole diminue le nombre des oeufs. A concentration e'gale 0, 25% la mere donne seulement 52, 4 de leur oeufs, sur les ovifroitions traits en comparant au control pas traites. 1% concentration agie comme une concentration protegante contre l'etat pas bien developé et cela en prevenant la troisieme de la larve de manger les disques des, feuilles traites. En plus l'eau emulsifie de l'extrait de 1'ether petrole etait insecticide dans un pourcentage de mortalite qui est directement proportional à la concentration appliquee et la duree de l'exposition.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1952) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Allen, N. B. (1965) Excretion of organic compounds by Chlamydomonas. Arch. Microbiol. 24, 163.Google Scholar
Amonkar, S. V. (1969) Fresh water algae and their metabolites as a means of biological control of mosquites. Ph. D. Dissert. Department of Entomology University of California, Riverside.Google Scholar
Angerilli, P. D. and Beirne, B. P. (1974) Influence of some fresh water plants on the development and survival of mosquito larvae in British Columbia. Can. J. Zool. 52, 813.CrossRefGoogle ScholarPubMed
Bernays, E. and Deluca, C. (1981) Insect antifeedant properties of an iridoid glycoside: Ipolanide. Experientia 37, 12891290.CrossRefGoogle Scholar
El-Bazt, F. K., Said, M., El-Din, Badr and Mohamed, S. M. (1984) The presence of antimicrobial substance in certain algae. Egypt. J. Microbiol. 20, 5760.Google Scholar
Finney, D. J. (1971) Probit analysis. 3rd Edn.Cambridge University Press, London.Google Scholar
Gentile, G. J. (1971) In Microbial Toxins (Edited by S., Kadis, Aciegler, and Ajl, A. J.), Vol. 7 p. 27. Academic Press, New York.Google Scholar
Khalifa, A., Rizk, A., Salama, H. S. and Sharaby, A. (1973) Roleofphagostimulantofcottonleavesin the feeding behaviour of Spodoptera littoralis. J. Insect. Physiol. 19, 1501.CrossRefGoogle Scholar
Kubo, I. and Nakanishi, K. (1982) Host Plant Resistance to Pests (Edited by Hedin, P. A.), American Chemical Society: Washington, DC. 1977. ACS Symp. Ser. No. 62, p. 165.Google Scholar
Lwande, W., Hassanalli, A., Njoroge, P. W., Bentley, M. D., Delle Monache, F. and Jondiko, J. I. (1985) A new α a hydroxy petrocarpan with insect antifeedant and antifungal properties from the roots of Tephrosia hildebranditii. Insect Sci. Applic. 6, 537.Google Scholar
Rosenthaler, L. (1930) The Chemical Investigations of Plants. G. Bell and Sons, Ltd, London.Google Scholar
Salama, H. S. and Sharaby, A. (1980) Efficiency of algae as a protein source in diets for rearing insects. Z. angew. Entomol. 90, 329332.CrossRefGoogle Scholar
Saleh, M., Abbas Nadia, M., Moein, Abdel and Ibrahim, Nagy A. (1982) Insect antifeeding Azulene derivative from the brown alga Dictyota dichotoma. J. Agric. Food Chem. 32, 1432.CrossRefGoogle Scholar