Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T07:46:55.342Z Has data issue: false hasContentIssue false

A shape optimization library for the design of microwave components

Published online by Cambridge University Press:  18 November 2013

Najib Mahdi
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Stephane Bila*
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Serge Verdeyme
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Michel Aubourg
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Khaled Khoder
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Annie Bessaudou
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Françoise Cosset
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Christophe Durousseau
Affiliation:
XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Jérôme Puech
Affiliation:
CNES, 18 Avenue Edouard Belin, 31401 Toulouse Cedex, France
Laetitia Estagerie
Affiliation:
CNES, 18 Avenue Edouard Belin, 31401 Toulouse Cedex, France
Damien Pacaud
Affiliation:
THALES ALENIA SPACE, 26 Avenue J.F.Champollion, 31100 Toulouse Cedex, France
Hervé Leblond
Affiliation:
THALES ALENIA SPACE, 26 Avenue J.F.Champollion, 31100 Toulouse Cedex, France
*
Corresponding author: S. Bila Email: stephane.bila@xlim.fr

Abstract

This paper outlines an original shape optimization library backed by a three dimensional (3D) full-wave electromagnetic (EM) simulator, combining several efficient structural optimization techniques and suitable for viable computer-aided design (CAD) of complex microwave components. The microwave components are modeled by finite element method (FEM) and their dimensions and shape are optimized using four techniques: design of experiments (DOE), level-set method (LS), topology gradient (TG) method, and genetic algorithm (GA). The various methods allow determining the optimal geometry, shape or topology of 2D or 3D objects within the microwave device, by minimizing iteratively a cost function related to the desired specifications. Typical demonstration illustrates the versatility of the proposed library based on the design of a dual mode dielectric resonator filter in order to improve its unloaded quality factor by keeping the same frequency isolation, their accuracy and efficiency are verified by the available measured results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Swanson, D.G.; Ye, S.: Microstrip filter design using direct EM field simulation. IEEE Trans. Microw. Theory Tech., 42 (1994), 13531359.CrossRefGoogle Scholar
[2]Arcioni, P.; Bozzi, M.; Bressan, M.; Conciauro, G.; Perregrini, L.: Fast optimization, tolerance analysis, and yield estimation of H-/E-plane waveguide components with irregular shapes. IEEE Trans. Microw. Theory Tech., 52 (2004), 319328.CrossRefGoogle Scholar
[3]Bila, S.; Baillargeat, D.; Aubourg, M.; Verdeyme, S.; Guillon, P.: Full electromagnetic CAD tool for microwave devices using a finite element method and neural networks. Int. J. Numer. Model., Electron. Netw. Devices Fields, 13 (2000), 167180.3.0.CO;2-W>CrossRefGoogle Scholar
[4]Akel, H.: Webb, Design sensitivities for scattering-matrix calculation with tetrahedral edge elements. IEEE Trans. Magn., 36 (2000), 10431046.Google Scholar
[5]Bushyager, N.; Stailculescu, D.; Obatoyinbo, A.; Martin, L.; Tentzeris, M.: Optimization of 3-D multilayer RF components using the design of experiments (DOE) technique, In 2004 IEEE MTT-S Int. Microwave Symp. Dig., Forth Worth, TX, USA, 2004.Google Scholar
[6]Allaire, G.; De Gournay, F.; Jouve, F.; Toader, A.M.: Structural optimization using topological and shape sensitivity via a level set method. Control Cybernetics, 34 (2005), 5981.Google Scholar
[7]Khalil, H. et al. : Shape optimized design of microwave dielectric resonators by level-set and topology gradient methods. Int. J. RF Microw. Comput. Aided Eng., 20 (2010), 3341.CrossRefGoogle Scholar
[8]Khalil, H. et al. : Topology optimization applied to the design of a dual-mode filter including a dielectric resonator, In 2008 IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, USA, 2008.Google Scholar
[9]Zhang, Y.; , S.W.: Genetic algorithm in reduction of numerical dispersion of 3-D alternating-direction-implicit finite-difference time-domain method. IEEE Trans. Microw. Theory Tech., 55 (2007), 966973.CrossRefGoogle Scholar
[10]Berry, S.; Fiedziuszko, S.J.; Holme, S.: A Ka-band dual mode dielectric resonator loaded cavity filter for satellite applications, In 2012 IEEE MTT-S Int. Microwave Symp. Dig., Montreal, QC, Canada, 2012.Google Scholar
[11]Duterte, C.; Delhote, N.; Baillargeat, D.; Verdeyme, S.; Abouliatim, Y.; Chartier, T.: 3D ceramic microstereolihography applied to sub-millimeter devices manufacturing, In 37th European Microwave Conf., Munich, Germany, 2007.Google Scholar
[12]Bila, S. et al. : Direct electromagnetic optimisation method for microwave filter design. Electron. Lett., 35 (1999), 400401.CrossRefGoogle Scholar