Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T17:17:03.190Z Has data issue: false hasContentIssue false

Realization and calibration of the MIMO radar MIRA-CLE Ka

Published online by Cambridge University Press:  24 April 2014

Oliver Biallawons*
Affiliation:
Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Array-based Radar Imaging, Fraunhoferstraße 20, 53343 Wachtberg, Germany. Phone: + 49 228 9435 139
Jens Klare
Affiliation:
Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Array-based Radar Imaging, Fraunhoferstraße 20, 53343 Wachtberg, Germany. Phone: + 49 228 9435 139
Olaf Saalmann
Affiliation:
Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Array-based Radar Imaging, Fraunhoferstraße 20, 53343 Wachtberg, Germany. Phone: + 49 228 9435 139
*
Corresponding author: O. Biallawons Email: oliver.biallawons@fhr.fraunhofer.de

Abstract

This paper presents the technical realization of the multiple-input multiple-output (MIMO) radar MIRA-CLE Ka (MIMO radar-configurable in Ka-band). This system is a stationary imaging radar without any mechanical moving parts. It is highly portable, ready to use in only a couple of minutes, and it is able to process one radar image per second during continuous radar measurements in the current stage of development. In addition to the image processing, it is possible to detect changes in range of 0.1 mm in the illuminated scene. The MIMO system operates in Ka band and consists of 16 receive and 16 transmit elements, so that 256 virtual elements are generated during signal processing. The size of the antenna's frontend is about 80 cm in width. Owing to its compact size, flexibility, and realtime capability, the system offers a wide field of applications.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gumbmann, F.; Tran, P.; Weinzierl, J.; Schmidt, L.-P.: Multistatic short range Ka-band imaging system, in German Microwave Conf., Munich, Germany, 2009.Google Scholar
[2]Zwanetski, A.; Rohling, H.: Continuous wave MIMO radar based on time division multiplexing, in Int. Radar Symp., Warsaw, Poland, 2012.Google Scholar
[3]Wilden, H.; Klare, J.; Fröhlich, A.; Krist, M.: MIRA-CLE, an experimental MIMO radar in Ka band, in EUSAR 2010, Aachen, Germany, 2010.Google Scholar
[4]Krist, M.: Design, Aufbau und Charakterisierung alternativer Chirp-basierter Signalgenerierungsschaltungen auf Demonstratorebene für parallelen Waveform Diversity-Betrieb in breitbandigen bildgebenden Radaren im Ka-Band sowie deren Synchronisierung. Diploma thesis, Hochschule Bonn-Rhein-Sieg, Germany, 2009.Google Scholar
[5]El-Arnauti, G.; Saalmann, O.; Klare, J.: Up-converter design and transmit path characterization for MIR-CLE Ka, in Eur. Radar Conf., Nuremberg, Germany, 2013.Google Scholar
[6]Nzouatom, H.K.: Design, Optimierung und Aufbau einer breitbandigen, gepulsten und hoch integrierten Sendeendstufe im Ka- Band in Hybrid-Technologie für ein MIMO Experimental radar system. Diploma thesis, Fachhochschule Kaiserslautern, Germany, 2010.Google Scholar
[7]Fröhlich, A.: Design, Optimierung und Aufbau eines breitbandigen 40 GHz-Empfängers in SMD- sowie “Bare Die”-Technologie mit Vivaldi Antenne. Diploma thesis, Fachhochschule Aachen, Germany, 2009.Google Scholar
[8]Klare, J.; Saalmann, O.; Wilden, H.; Brenner, A.R.: Environmental monitoring with the imaging MIMO radars MIRA-CLE and MIRA-CLE X, in IEEE Geoscience and Remote Sensing Symp., Honolulu, Hawaii, 2010.Google Scholar
[9]Rezer, K.: Thinned MIMO arrays with constrained element spacing for imaging radar, in Eur. Radar Conf., Amsterdam, Netherlands, 2012.Google Scholar
[10]Klare, J.; Saalmann, O.: MIRA-CLE X: a new imaging MIMO-radar for multi-purpose applications, in Eur. Radar Conf., Paris, France, 2010.Google Scholar
[11]Guetlein, J.; Bertl, S.; Kirschner, A.; Detlefsen, J.: Switching scheme for a FMCW-MIMO radar on a moving platform, in Eur. Radar Conf., Amsterdam, Netherlands, 2012.Google Scholar
[12]Klare, J.; Saalmann, O.; Biallawons, O.: First imaging and change detection results of the MIMO radar MIRA-CLE Ka, in Int. Radar Symp., Dresden, Germany, 2013.Google Scholar
[13]Pfeffer, C.; Feger, R.; Schmid, C.M.; Wagner, C.; Stelzer, A.: An IQ-modulator based heterodyne 77-GHz FMCW colocated MIMO radar system, in Int. Microw. Symp., Montreal, Canada, 2012.Google Scholar
[14]de Wit, J.J.M.; van Rossum, W.L.; de Jong, A.J.: Orthogonal waveforms for FMCW MIMO radar, in IEEE Radar Conf., Kansas City, USA, 2011.Google Scholar
[15]Klare, J.; Brenner, A.R.; Ender, J.H.G.: A new airborne radar for 3D imaging – image formation using the ARTINO principle, in EUSAR, Dresden, Germany, 2006.Google Scholar
[16]Zhuge, X.; Yarovoy, A.G.: A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Trans. Geosci. Remote Sens. 49 (1) (2011), 509518.Google Scholar
[17]Gumbmann, F.; Schmidt, L.-P.: Millimeter-wave imaging with optimized sparse periodic array for short-range applications. IEEE Trans. Geosci. Remote Sens., 49 (10) (2011), 36293638.Google Scholar
[18]Koeppel, T.; Methfessel, S.; Schiessl, A.; Schmidt, L.-P.: Increasing measurement speed in mm-Wave imaging systems by means of frequency multiplexing, in Eur. Radar Conf., Nuremberg, Germany, 2013.Google Scholar
[19]Zhuge, X.; Yarovoy, A.G.: Three-dimensional near-field MIMO array imaging using range migration techniques. IEEE Trans. Signal Process. 21 (6) (2012), 30263033.Google Scholar