Skip to main content Accessibility help
×
Home

Radiometric accuracy and stability of sentinel-1A determined using point targets

  • Kersten Schmidt (a1), Núria Tous Ramon (a1) and Marco Schwerdt (a1)

Abstract

Sentinel-1A is a space-borne synthetic aperture radar (SAR) system developed in the frame of the Copernicus Program. The German Aerospace Center supported the radiometric and polarimetric calibration of Sentinel-1A by the analysis of point target responses of several acquisitions considering different modes, beams, and polarization channels. An elevation dependent bias, which had not been properly predicted by the used antenna model, was found for all investigated modes. Offsets of up to 2 dB were determined during the SAR instrument calibration phase, in particular, for low and high elevation angles. Therefore, in order to correct these elevation biases, a radiometric refinement was carried out by European Space Agency in November 2015. After that, Sentinel-1A radiometric accuracy and long-term stability were analyzed over a period of 1.5 years. For this period, the absolute calibration factor and the channel imbalance were determined for the main imaging mode. Moreover, a slight drift of the derived calibration factor was observed starting from July 2016. At the same time an anomaly was detected in the front-end affecting several transmit and receive modules in one tile. The radiometric behavior of Sentinel-1A should therefore be monitored for a longer period of time, especially to detect potential degradation effects of the SAR instrument.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radiometric accuracy and stability of sentinel-1A determined using point targets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radiometric accuracy and stability of sentinel-1A determined using point targets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radiometric accuracy and stability of sentinel-1A determined using point targets
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Kersten Schmidt, E-mail: kersten.schmidt@dlr.de

References

Hide All
1.Torres, R, Snoeij, P, Geudtner, D, Bibby, D, Davidson, M, Attema, E, Potin, P, Rommen, B, Floury, N, Brown, M, Navas Traver, I, Deghaye, P, Duesmann, B, Rosich, B, Miranda, N, Bruno, C, L'Abbate, M, Croci, R, Pietropaolo, A, Huchler, M and Rostan, F (2012) GMES Sentinel-1 mission. Remote Sensing of Environment 120, 924, ISSN 0034-4257. doi: 10.1016/j.rse.2011.05.028. Available at http://www.sciencedirect.com/science/article/pii/S0034425712000600.
2.Geudtner, D, Torres, R, Snoeij, P, Davidson, M and Rommen, B Sentinel-1 system capabilities and applications. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 14571460. IEEE, 2014.
3.De Zan, F and Monti Guarnieri, A (2006) TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing 44(9), 23522360, ISSN . doi: 10.1109/TGRS.2006.873853.
4.Shimada, M, Isoguchi, O, Tadono, T and Isono, K (2009) PALSAR radiometric and geometric calibration. IEEE Transactions on Geoscience and Remote Sensing 47(12), 39153932, ISSN . doi: 10.1109/TGRS.2009.2023909.
5.Schwerdt, M, Brautigam, B, Bachmann, M, Döring, B, Schrank, D and Hueso Gonzalez, J (2010a) Final TerraSAR-X calibration results based on novel efficient methods. IEEE Transactions on Geoscience and Remote Sensing 48(2), 677689, ISSN . doi: 10.1109/TGRS.2009.2035308.
6.Mishra, MD, Patel, PR, Shukla, A and Shukla, AK (2014) Absolute Radiometric Calibration of FRS-1 and MRS mode of RISAT-1 Synthetic Aperture Radar (SAR) data using Corner Reflectors. International Journal of Advanced Engineering Research and Science 1(6), 7889, ISSN .
7.Anderson, C, Figa-Salda na, J, Wilson, JJW and Ticconi, F (2017) Validation and cross-validation methods for ASCAT. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(5), 22322239, ISSN . doi: 10.1109/JSTARS.2016.2639784.
8.Long, DG and Skouson, GB (1996) Calibration of spaceborne scatterometers using tropical rain forests. IEEE Transactions on Geoscience and Remote Sensing 34(2), 413424, ISSN . doi: 10.1109/36.485119.
9.Woodhouse, IH, van der Sanden, JJ and Hoekman, DH (1999) Scatterometer observations of seasonal backscatter variation over tropical rain forest. IEEE Transactions on Geoscience and Remote Sensing 37(2), 859861, ISSN . doi: 10.1109/36.752204.
10.Ulander, LM, Hawkins, RK, Livingstone, CE and Lukowski, TI (1991) Absolute radiometric calibration of the CCRS SAR. IEEE Transactions on Geoscience and Remote Sensing 29(6), 922933.
11.van Zyl, JJ (1990) Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses. IEEE Transactions on Geoscience and Remote Sensing 28(3), 337348, ISSN . doi: 10.1109/36.54360.
12.Li, CR, Tang, LL, Ma, LL, Zhou, YS, Gao, CX, Wang, N, Li, XH, Wang, XH and Zhu, XH (2015) Comprehensive Calibration and Validation Site for Information Remote Sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7(W3), 12331240. doi: 10.5194/isprsarchives-XL-7-W3-1233-2015.
13.Ajadi, OA, Meyer, FJ and Webley, PW (2016) Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sensing 8(6), 482, ISSN . doi: 10.3390/rs8060482.
14.El Hajj, M, Baghdadi, N, Zribi, M and Angelliaume, S (2016) Analysis of Sentinel-1 radiometric stability and quality for land surface applications. Remote Sensing 8(5), 406, ISSN . doi: 10.3390/rs8050406.
15.Schwerdt, M, Döring, BJ, Zink, M and Schrank, D In-orbit calibration plan of Sentinel-1. In EUSAR 2010: 8th European Conference on Synthetic Aperture Radar, Proceedings of. VDE, June 2010b.
16.Schwerdt, M, Schmidt, K, Tous Ramon, N, Castellanos Alfonzo, G, Döring, B, Zink, M and Prats, P (2016) Independent Verification of the Sentinel-1A System Calibration. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing 9(3), 9941007, ISSN . doi: 10.1109/JSTARS.2015.2449239.
17.Schwerdt, M, Schmidt, K, Tous Ramon, N, Klenk, P, Yague-Martinez, N, Prats-Iraola, P, Zink, M and Geudtner, D (2017) Independent System Calibration of Sentinel-1B. Remote Sensing 9(6), 511.
18.Jirousek, M, Döring, B, Rudolf, D, Raab, S and Schwerdt, M Development of the highly accurate DLR “Kalibri” transponder. In EUSAR 2014: 10th European Conference on Synthetic Aperture Radar, Proceedings of. VDE, June 2014.
19.Rudolf, D, Döring, BJ, Jirousek, M, Raab, S, Reimann, J and Schwerdt, M Absolute radiometric calibration of C-band transponders with proven plausibility. In EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, June 2014.
20.Reimann, J, Schwerdt, M, Schmidt, K, Tous Ramon, N, Castellanos Alfonzo, G, Döring, BJ, Walter Antony, J, Rudolf, D, Raab, S and Zink, M The DLR SAR calibration center. In Asia-Pacific Conference on Synthetic Aperture Radar (APSAR); Proceedings of, 2015.
21.Gray, AL, Vachon, PW, Livingstone, CE and Lukowski, TI (1990) Synthetic aperture radar calibration using reference reflectors. IEEE Transactions on Geoscience and Remote Sensing 28(3), 374383, ISSN . doi: 10.1109/36.54363.
22.Freeman, A (1992) SAR calibration: an overview. IEEE Transactions on Geoscience and Remote Sensing 30(6), 11071121.
23.Schmidt, K, Schwerdt, M, Castellanos, Gand Tous Ramon, N (2016) Sentinel-1A calibration support during routine operation. In EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Proceedings of VDE.
24.Miranda, N. Sentinel-1A TOPS radiometric calibration refinement. Technical report, European Space Agency, 2015. available within the Sentinel-1 Document Library online via https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library, (status: Nov 2017).
25.Status of Sentinel-1 are permanently reported and stored by ESA via webnews https://sentinel.esa.int/web/sentinel/news.
26.Hounam, D, Schwerdt, Mand Zink, M (2002) Active antenna module characterisation by Pseudo-noise gating. In 25th ESA Antenna Workshop on Satellite Antenna Technology.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed