Skip to main content Accessibility help

The quest for perfect electromagnetic absorber: a review

  • Manish Mathew Tirkey (a1) and Nisha Gupta (a1)


This paper specifies a concise review of recent research and development in the context of electromagnetic absorbers. An attempt has been made to justify the need for economical and thin microwave absorbers for achieving good absorption characteristics over a wide range of frequencies within a specified band of electromagnetic spectrum. This paper mainly focuses on the challenges encountered while designing a perfect electromagnetic absorber which can absorb electromagnetic radiations of any polarization that may appear from any direction and may occur over a broader bandwidth. The absorbers which are competent enough to withstand all these challenges are capable to suppress the reflection and transmission of unknown electromagnetic radiations efficiently to the lowest possible level. Several prospects of nanotechnology in flexible absorber design are also described to enhance absorber characteristics. This paper also provides a futuristic glimpse on several applications of such absorbers for commercial and military purposes.


Corresponding author

Author for correspondence: Manish Mathew Tirkey, E-mail:


Hide All
1Munk, BA (2009) Metamaterials: Critique and Alternatives. Hoboken, NJ: John Wiley & Sons.
2Veselago, VG (1968) The electrodynamics of substances with simultaneously negative values of and μ. Soviet Physics: Uspekhi 10, 509.
3Vu, DQ, Le, DH, Dinh, HT, Trinh, TG, Yue, L, Le, DT and Vu, DL (2018) Broadening the absorption bandwidth of metamaterial absorber by coupling three dipole resonances. Physica B: Condensed Matter 534, 9094.
4Capolino, F (2009) Applications of Metamaterials. Boca Raton, FL: CRC Press.
5Zouhdi, S, Sihvola, A and Vinogradov, AP (2008) Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Dordrecht, Netherlands: Springer Science & Business Media.
6Xu, HX, Wang, GM, Qi, MQ and Xu, ZM (2012) A metamaterial antenna with frequency-scanning omnidirectional radiation patterns. Applied Physics Letters 101, 173501.
7Liu, Z, Lee, H, Xiong, Y, Sun, C and Zhang, X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 16861686.
8Pu, M, Feng, Q, Wang, M, Hu, C, Huang, C, Ma, X, Zhao, Z, Wang, C and Luo, X (2012) Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express 20, 22462254.
9Liu, X, Tyler, T, Starr, T, Starr, AF, Jokerst, NM and Padilla, WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Physical Review Letters 107, 045901.
10Melik, R, Unal, E, Kosku Perkgoz, N, Puttlitz, C and Demir, HV (2009) Flexible metamaterials for wireless strain sensing. Applied Physics Letters 95, 181105.
11Xiao, Zy, Liu, Dj, Ma, Xl and Wang, Zh (2015) Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Optics Express 23, 70537061.
12Hamm, JM, Wuestner, S, Tsakmakidis, KL and Hess, O (2011) Theory of light amplification in active fishnet metamaterials. Physical Review Letters 107, 167405.
13Hajizadegan, M, Ahmadi, V and Sakhdari, M (2013) Design and analysis of ultrafast and tunable all optical metamaterial switch enhanced by metal nanocomposite. Journal of Lightwave Technology 31, 18771883.
14Caloz, C and Itoh, T (2005) Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ: John Wiley & Sons.
15Tong, XC (2016) Advanced Materials and Design for Electromagnetic Interference Shielding. Boca Raton, FL: CRC Press.
16Holloway, CL, Kuester, EF, Gordon, JA, O'Hara, J, Booth, J and Smith, DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas & Propagation Magazine 54, 1035.
17Kildishev, AV, Boltasseva, A and Shalaev, VM (2013) Planar photonics with metasurfaces. Science 339, 1232009.
18Shelby, RA, Smith, DR and Schultz, S (2001) Experimental verification of a negative index of refraction. Science 292, 7779.
19Munaga, P, Ghosh, S, Bhattacharyya, S and Srivastava, KV (2016) A fractal-based compact broadband polarization insensitive metamaterial absorber using lumped resistors. Microwave and Optical Technology Letters 58, 343347.
20Montaser, AM (2016) Design of metamaterial absorber for all bands from microwave to terahertz ranges. Int. J. Adv. Res. Electron. Commun. Eng. 5, 14751481.
21Landy, NI, Sajuyigbe, S, Mock, J, Smith, D and Padilla, W (2008) Perfect metamaterial absorber. Physical Review Letters 100, 207402.
22Yoo, Y, Kim, Y, Hwang, J, Rhee, J, Kim, K, Kim, Y, Cheong, H, Chen, L and Lee, Y (2015) Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters 106, 071105.
23Wang, GZ and Wang, BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator. Journal of Lightwave Technology 33, 51515156.
24Wang, BX, Wang, LL, Wang, GZ, Huang, WQ, Li, XF and Zhai, X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters 26, 111114.
25La Spada, L and Vegni, L (2016) Metamaterial-based wideband electromagnetic wave absorber. Optics Express 24, 57635772.
26Jang, T, Youn, H, Shin, YJ and Guo, LJ (2014) Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 1, 279284.
27Wu, B, Tuncer, HM, Naeem, M, Yang, B, Cole, MT, Milne, WI and Hao, Y (2014) Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Scientific Reports 4, 4130.
28Batrakov, K, Kuzhir, P, Maksimenko, S, Paddubskaya, A, Voronovich, S, Lambin, P, Kaplas, T and Svirko, Y (2014) Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports 4, 7191.
29Fante, RL and Mccormack, MT (1988) Reflection properties of the Salisbury screen. IEEE Transactions on Antennas and Propagation 36, 14431454.
30Du Toit, LJ (1994) The design of jauman absorbers. IEEE Antennas & Propagation Magazine 36, 1725.
31Munk, BA (2005) Frequency Selective Surfaces: Theory and Design. Hoboken, NJ: John Wiley & Sons.
32Park, MJ, Choi, J and Kim, SS (2000) Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Transactions on Magnetics 36, 32723274.
33Naito, Y and Suetake, K (1971) Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Transactions on Microwave Theory and Techniques 19, 6572.
34Baek, IH, Choi, SY, Lee, HW, Cho, WB, Petrov, V, Agnesi, A, Pasiskevicius, V, Yeom, DI, Kim, K and Rotermund, F (2011) Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti: sapphire laser. Optics Express 19, 78337838.
35Ghosh, S, Bhattacharyya, S and Srivastava, KV (2016) Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber. IET Microwaves, Antennas & Propagation 10, 850855.
36Sun, H, Gu, C, Chen, X, Li, Z, Liu, L, Xu, B and Zhou, Z (2017) Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Scientific Reports 7, 40782.
37Panwar, R, Puthucheri, S, Agarwala, V and Singh, D (2015) Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites. IEEE Transanctions on Microwave Theory and Technology 63, 24382448.
38Wang, H, Kong, P, Cheng, W, Bao, W, Yu, X, Miao, L and Jiang, J (2016) Broadband tunability of polarization-insensitive absorber based on frequency selective surface. Scientific Reports 6, 23081.
39Wang, B, Koschny, T and Soukoulis, CM (2009) Wide-angle and polarization-independent chiral metamaterial absorber. Physical Review B 80, 033108.
40Li, M, Yang, HL, Hou, XW, Tian, Y and Hou, DY (2010) Perfect metamaterial absorber with dual bands. Progress in Electromagnetics Research 108, 3749.
41Cheng, Y, Yang, H, Cheng, Z and Wu, N (2011) Perfect metamaterial absorber based on a split-ring-cross resonator. Applied Physics A: Materials 102, 99103.
42Bhattacharyya, S, Ghosh, S and Vaibhav Srivastava, K (2013) Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. Journal of Applied Physics 114, 094514.
43Bian, B, Liu, S, Wang, S, Kong, X, Zhang, H, Ma, B and Yang, H (2013) Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber. Journal of Applied Physics 114, 194511.
44Ayop, OB, Abd Rahim, MK, Murad, NA, Samsuri, NA and Dewan, R (2014) Triple band circular ring-shaped metamaterial absorber for X-band applications. Progress in the Electromagnetic Research M 39, 6575.
45Gong, C, Zhan, M, Yang, J, Wang, Z, Liu, H, Zhao, Y and Liu, W (2016) Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Scientific Reports 6, 32466.
46Zhang, X and Wu, Y (2015) Effective medium theory for anisotropic metamaterials. Scientific Reports 5, 7892.
47Shen, X, Yang, Y, Zang, Y, Gu, J, Han, J, Zhang, W, Jun Cui, T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters 101, 154102.
48Chen, HT (2012) Interference theory of metamaterial perfect absorbers. Optics Express 20, 71657172.
49Chen, J, Hu, Z, Wang, G, Huang, X, Wang, S, Hu, X and Liu, M (2015) High-impedance surface-based broadband absorbers with interference theory. IEEE Transactions on Antennas and Propagation 63, 43674374.
50Soheilifar, M and Sadeghzadeh, R (2015) Design, fabrication and characterization of stacked layers planar broadband metamaterial absorber at microwave frequency. AEU-International Journal of Electronics and Communications 69, 126132.
51Lee, HM and Lee, HS (2012) A method for extending the bandwidth of metamaterial absorber. International Journal of Antennas and Propagation 2012.
52Kollatou, TM, Dimitriadis, AI, Assimonis, S, Kantartzis, NV and Antonopoulos, CS (2013) A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures. Progress in Electromagnetics Research 136, 579594.
53Park, JW, Van Tuong, P, Rhee, JY, Kim, KW, Jang, WH, Choi, EH, Chen, LY and Lee, Y (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Optics Express 21, 96919702.
54Gu, S, Su, B and Zhao, X (2013) Planar isotropic broadband metamaterial absorber. Journal of Applied Physics 114, 163702.
55Zuo, W, Yang, Y, He, X, Mao, C and Liu, T (2017) An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas Wireless Propag. Lett. 16, 928931.
56Vinoy, KJ and Jha, RM (1996) Radar Absorbing Materials- From Theory to Design and Characterization, Boston, MA: Kluwer Academic Publishers.
57Rephaeli, E and Fan, S (2008) Tungsten black absorber for solar light with wide angular operation range. Applied Physics Letters 92, 211107.
58Shen, Y, Pei, Z, Pang, Y, Wang, J, Zhang, A and Qu, S (2015) An extremely wideband and lightweight metamaterial absorber. Journal of Applied Physics 117, 224503.
59Hokmabadi, MP, Wilbert, DS, Kung, P and Kim, SM (2014) Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber. Physical Review Applied 1, 044003.
60Tang, J, Xiao, Z, Xu, K and Liu, D (2016) A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure. Optics Communications 372, 6470.
61Long, C, Yin, S, Wang, W, Li, W, Zhu, J and Guan, J (2016) Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Scientific Reports 6, 21431.
62Najim, M, Smitha, P, Agarwala, V and Singh, D (2015) Design of light weight multi-layered coating of zinc oxide–iron–graphite nano-composites for ultra-wide bandwidth microwave absorption. Journal of Material Science: Material Electronics 26, 73677377.
63Najim, M, Puthucheri, S, Agarwala, V and Singh, D (2016) ANN-based two-layer absorber design using Fe–Al hybrid nano-composites for broad bandwidth microwave absorption. IEEE Transactions on Magnetics 52, 18.
64Wang, K, Zhao, J, Cheng, Q, Dong, DS and Cui, TJ (2014) Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm. Scientific Reports 4, 5935.
65Han, Z, Li, D, Wang, H, Liu, X, Li, J, Geng, D and Zhang, Z (2009) Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Applied Physics Letters 95, 023114.
66Qing, Y, Zhou, W, Luo, F and Zhu, D (2009) Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. Journal of Magnetism and Magnetic Materials 321, 2528.
67Acher, O and Dubourg, S (2008) Generalization of Snoek's law to ferromagnetic films and composites. Physics Review B 77, 104440.
68Li, W, Wu, T, Wang, W, Guan, J and Zhai, P (2014) Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers. Applied Physics Letters 104, 022903.
69Yin, X, Long, C, Li, J, Zhu, H, Chen, L, Guan, J and Li, X (2015) Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Scientific Reports 5, 15367.
70Pang, Y, Wang, J, Ma, H, Feng, M, Li, Y, Xu, Z, Xia, S and Qu, S (2016) Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Scientific Reports 6, 29429.
71Kong, P, Yu, X, Liu, Z, Zhou, K, He, Y, Miao, L and Jiang, J (2014) A novel tunable frequency selective surface absorber with dual-DOF for broadband applications. Optics Express 22, 3021730224.
72Zhai, H, Zhang, B, Zhang, K and Zhan, C (2017) A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability. Journal of Electromagnetic Waves 31, 447459.
73Kim, HK, Lee, D and Lim, S (2016) Wideband-switchable metamaterial absorber using injected liquid metal. Scientific Reports 6, 31823.
74Kim, Y, Yoo, Y, Hwang, J and Lee, Y (2016) Ultra-broadband microwave metamaterial absorber based on resistive sheets. Journal of Optics (2010) 19, 015103.
75Zhang, C, Cheng, Q, Yang, J, Zhao, J and Cui, TJ (2017) Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters 110, 143511.
76Ellison, W (2007) Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. Journal of Physical and Chemical Reference Data 36, 118.
77Andryieuski, A, Kuznetsova, SM, Zhukovsky, SV, Kivshar, YS and Lavrinenko, AV (2015) Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Scientific Reports 5, 13535.
78Odit, M, Kapitanova, P, Andryieuski, A, Belov, P and Lavrinenko, AV (2016) Experimental demonstration of water based tunable metasurface. Applied Physics Letters 109, 011901.
79Yoo, YJ, Ju, S, Park, SY, Kim, YJ, Bong, J, Lim, T, Kim, KW, Rhee, JY and Lee, Y (2015) Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports 5, 14018.
80Pang, Y, Wang, J, Cheng, Q, Xia, S, Zhou, XY, Xu, Z, Cui, TJ and Qu, S (2017) Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters 110, 104103.
81Asadchy, V, Faniayeu, I, Ra'Di, Y, Khakhomov, S, Semchenko, I and Tretyakov, S (2015) Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Physical Review X 5, 031005.
82Shi, Y, Li, YC, Hao, T, Li, L and Liang, CH (2017) A design of ultra-broadband metamaterial absorber. Waves Random Complex 27, 381391.
83Liu, N, Mesch, M, Weiss, T, Hentschel, M and Giessen, H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Letters 10, 23422348.
84Nguyen, TH, Bui, ST, Nguyen, TT, Nguyen, TT, Lee, Y, Nguyen, MA and Vu, DL (2014) Metamaterial-based perfect absorber: polarization insensitivity and broadband. Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 025013.
85Chaurasiya, D, Ghosh, S, Bhattacharyya, S and Srivastava, KV (2015) An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microwave and Optical Technology Letters 57, 697702.
86Kong, H, Li, G, Jin, Z, Ma, G, Zhang, Z and Zhang, C (2012) Polarization-independent metamaterial absorber for terahertz frequency. Journal of Infrared Millimeter and Terahertz Waves 33, 649656.
87Lee, KT, Ji, C and Guo, LJ (2016) Wide-angle, polarization-independent ultrathin broadband visible absorbers. Applied Physics Letters 108, 031107.
88Thi Quynh Hoa, N, Huu Lam, P and Duy Tung, P (2017) Wide-angle and polarization-independent broadband microwave metamaterial absorber. Microwave and Optical Technology Letters 59, 11571161.
89Seman, FC and Cahill, R (2011) Performance enhancement of Salisbury screen absorber using resistively loaded spiral FSS. Microwave and Optical Technology Letters 53, 15381541.
90Zhao, J, Cheng, Q, Chen, J, Qi, MQ, Jiang, WX and Cui, TJ (2013) A tunable metamaterial absorber using varactor diodes. New Journal of Physics 15, 043049.
91Li, S, Gao, J, Cao, X, Li, W, Zhang, Z and Zhang, D (2014) Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. Journal of Applied Physics 116, 043710.
92Serdiukov, A, Semchenko, I, Tertyakov, S and Sihvola, A (2001) Electromagnetics of bi-Anisotropic Materials-Theory and Application, vol. 11. Amsterdam, Netherlands: Gordon and Breach Science Publishers.
93Ra'di, Y, Asadchy, VS and Tretyakov, SA (2013) Total absorption of electromagnetic waves in ultimately thin layers. IEEE Transactions on Antennas and Propagation 61, 46064614.
94Wu, D, Liu, Y, Yu, Z, Chen, L, Ma, R, Li, Y, Li, R and Ye, H (2016) Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric srrs metamaterial. Optics Communications 380, 221226.
95Ghosh, S and Srivastava, KV (2016) Polarization-insensitive single-and broadband switchable absorber/reflector and its realization using a novel biasing technique. IEEE Transactions on Antennas and Propagation 64, 36653670.
96He, Y, Jiang, J, Chen, M, Li, S, Miao, L and Bie, S (2016) Design of an adjustable polarization-independent and wideband electromagnetic absorber. Journal of Applied Physics 119, 105103.
97Lin, B, Wang, B, Meng, W, Da, X, Li, W, Fang, Y and Zhu, Z (2016) Dual-band high-efficiency polarization converter using an anisotropic metasurface. Journal of Applied Physics 119, 183103.
98Knott, EF and Senior, T (1972) Cross polarization diagnostics. IEEE Transactions on Antennas and Propagation 20, 223224.
99Kundu, D, Mohan, A and Chakrabarty, A (2017) A compact ultrathin broadband absorber by reducing cross-polarized reflection from metal-backed anisotropic array. Microwave and Optical Technology Letters 59, 970976.
100Fan, Y, Zhang, HC, Yin, JY, Xu, L, Nagarkoti, DS, Hao, Y and Cui, TJ (2016) An active wideband and wide-angle electromagnetic absorber at microwave frequencies. IEEE Antennas Wireless Propagation Letters 15, 19131916.
101Kim, YJ, Yoo, YJ, Kim, KW, Rhee, JY, Kim, YH and Lee, Y (2015) Dual broadband metamaterial absorber. Optics Express 23, 38613868.
102Shen, Y, Pang, Y, Wang, J, Ma, H, Pei, Z and Qu, S (2015) Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. Journal of Physics D: Applied Physics 48, 445008.
103Li, SJ, Gao, J, Cao, XY and Zheng, G (2015) Polarization-insensitive and thin stereometamaterial with broadband angular absorption for the oblique incidence. Applied Physics A 119, 371378.
104Ayop, O, Rahim, M, Murad, N and Samsuri, N (2014) Dual band polarization insensitive and wide angle circular ring metamaterial absorber. In Antennas and Propagation (EuCAP), 2014 8th European Conference on, IEEE, 955957.
105Ayop, O, Rahim, MKA, Murad, NA, Samsuri, NA, Zubir, F and Majid, HA (2017) Dual-band metamaterial perfect absorber with nearly polarization-independent. Applied Physics A 123, 63.
106D'Amore, M, Sarto, MS, Hanson, G, Naeemi, A and Tay, BK (2012) Guest editorial special issue on applications of nanotechnology in electromagnetic compatibility (nano-emc). IEEE Transactions on Electromagnetic Compatibility 54, 25.
107Najim, M, Modi, G, Mishra, YK, Adelung, R, Singh, D and Agarwala, V (2015) Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano-and microstructures. Physical Chemistry Chemical Physics 17, 2292322933.
108Kim, BK and Lee, B (2014) Design of metamaterial-inspired wideband absorber at X-band adopting trumpet structures. Journal of Electromagnetic Engineering and Science 14, 314316.
109Tao, H, Strikwerda, AC, Fan, K, Padilla, WJ, Zhang, X and Averitt, RD (2011) MEMS based structurally tunable metamaterials at terahertz frequencies. Journal of Infrared Millimeter and Terahertz Waves 32, 580595.
110Wen, QY, Zhang, HW, Yang, QH, Chen, Z, Long, Y, Jing, YL, Lin, Y and Zhang, PX (2012) A tunable hybrid metamaterial absorber based on vanadium oxide films. Journal of Physics D: Applied Physics 45, 235106.
111Iwaszczuk, K, Strikwerda, AC, Fan, K, Zhang, X, Averitt, RD and Jepsen, PU (2012) Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Optics Express 20, 635643.
112Singh, PK, Korolev, KA, Afsar, MN and Sonkusale, S (2011) Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Applied Physics Letters 99, 264101.
113Kamyshny, A and Magdassi, S (2014) Conductive nanomaterials for printed electronics. Small (Weinheim an der Bergstrasse, Germany) 10, 35153535.
114Cochrane, C, Koncar, V, Lewandowski, M and Dufour, C (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7, 473492.
115Layani, M and Magdassi, S (2011) Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. Journal of Materials Chemistry 21, 1537815382.
116De, S, Higgins, TM, Lyons, PE, Doherty, EM, Nirmalraj, PN, Blau, WJ, Boland, JJ and Coleman, JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 17671774.
117Rathmell, AR and Wiley, BJ (2011) The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials 23, 47984803.
118Hu, L, Hecht, DS and Gruner, G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chemical Reviews 110, 57905844.
119Geim, AK and Novoselov, KS (2007) The rise of graphene. Nature Materials 6, 183191.
120Balci, O, Polat, EO, Kakenov, N and Kocabas, C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Communications 6, 6628.
121Huang, X, Hu, Z and Liu, P (2014) Graphene based tunable fractal hilbert curve array broadband radar absorbing screen for radar cross section reduction. AIP Advances 4, 117103.
122Huang, X, Zhang, X, Hu, Z, Aqeeli, M and Alburaikan, A (2014) Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach. IET Microwaves, Antennas & Propagation 9, 307312.
123Huang, X, Pan, K and Hu, Z (2016) Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers. Scientific Reports 6, 38197.
124Kim, HK, Ling, K, Kim, K and Lim, S (2015) Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Optics Express 23, 58985906.
125Lee, D, Kim, HK and Lim, S (2017) Textile metamaterial absorber using screen printed chanel logo. Microwave and Optical Technology Letters 59, 14241427.
126Yoo, M, Kim, HK, Kim, S, Tentzeris, M and Lim, S (2015) Silver nanoparticle-based inkjet-printed metamaterial absorber on flexible paper. IEEE Antennas Wireless Propagation Letters 14, 17181721.
127Li, SJ, Gao, J, Cao, XY, Zhang, Z, Liu, T, Zheng, YJ, Zhang, C and Zheng, G (2015) Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber. Applied Physics Letters 106, 181103.
128Bu, DD, Yue, CS, Zhang, GQ, Hu, YT and Dong, S (2015) Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film. Chinese Physics B 25, 067802.
129Sen, G, Islam, SN, Banerjee, A and Das, S (2017) Broadband perfect metamaterial absorber on thin substrate for X-band and Ku-band applications. Prog. Electromagn. Res. C 73, 916.
130Ahmadia, F and Idab, N (2017) A broadband ultrathin metamaterial absorber using tilted parallel strips. In Proceedings SPIE. Volume 10103. 101031V–1.
131Lee, J and Lee, B (2016) Wideband absorber using silver nanowire resistive film. Electronics Letters 52, 631633.
132Bhattacharyya, S, Ghosh, S, Chaurasiya, D and Srivastava, KV (2015) Wide-angle broadband microwave metamaterial absorber with octave bandwidth. IET Microwaves, Antennas & Propagation 9, 11601166.
133Sood, D and Tripathi, CC (2016) Broadband ultrathin low-profile metamaterial microwave absorber. Applied Physics A 122, 332.
134Ghosh, S, Bhattacharyya, S, Chaurasiya, D and Srivastava, KV (2015) An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas Wireless Propagation Letters 14, 11721175.
135Ozden, K, Yucedag, OM and Kocer, H (2016) Metamaterial based broadband RF absorber at X-band. AEU-International Journal of Electronics and Communications 70, 10621070.
136Kim, G and Lee, B (2015) Design of wideband absorbers using RLC screen. Electronics Letters 51, 834836.
137Li, YQ, Zhang, H, Fu, YQ and Yuan, NC (2008) RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas and Wireless Propagation Letters 7, 473476.
138Harrington, JJ Missile decoy radar cross section enhancer (October 13 1987) US Patent 4,700,190.
139Emerson, W (1973) Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation 21, 484490.
140Channabasappa, E and Egri, R System and method of using absorber-walls for mutual coupling reduction between microstrip antennas or brick wall antennas (September 23 2008) US Patent 7,427,949.
141Dyczij-Edlinger, R, Kingsland, DM, Peng, G, Perepelitsa, SG, Polstyanko, SV and Lee, JF (1996) Application of anisotropic absorbers to the analysis of mmic devices by the finite element method. IEEE transactions on magnetics 32, 854857.
142Kim, KY, Kim, WS, Jung, HJ and Song, HS Laminated electromagnetic wave absorber (June 21 1994) US Patent 5,323,160.
143Ishino, K, Hashimoto, Y and Abe, H Microwave heating oven having seal means for preventing the leakage of microwave energy (September 6 1977) US Patent 4,046,983.
144Yokoi, H and Fukumuro, H (1971) Low-sidelobe paraboloidal antenna with microwave absorber. Electronics and Communications in Japan 54, 3439.
145Zuo, W, Yang, Y, He, X, Zhan, D and Zhang, Q (2017) A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas and Wireless Propagation Letters 16, 329332.
146Namai, A, Sakurai, S, Nakajima, M, Suemoto, T, Matsumoto, K, Goto, M, Sasaki, S and Ohkoshi, Si (2008) Synthesis of an electromagnetic wave absorber for high-speed wireless communication. Journal of the American Chemical Society 131, 11701173.
147Pretorius, J (2004) Design and manufacture of a ferrimagnetic wave absorber for cellular phone radiations. In Electron Devices for Microwave and Optoelectronic Applications, 2004. EDMO 2004. 12th International Symposium on, IEEE, 119123.


Related content

Powered by UNSILO

The quest for perfect electromagnetic absorber: a review

  • Manish Mathew Tirkey (a1) and Nisha Gupta (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.