Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T03:16:59.635Z Has data issue: false hasContentIssue false

Novel stacked μ-negative material-loaded antenna for satellite applications

Published online by Cambridge University Press:  05 November 2014

Trushit K. Upadhyaya*
Affiliation:
Charotar University of Science and Technology, Gujarat 388421, India. Phone: +91 2697 247500
Shiv Prasad Kosta
Affiliation:
Charotar University of Science and Technology, Gujarat 388421, India. Phone: +91 2697 247500
Rajeev Jyoti
Affiliation:
Indian Space Research Organization, Gujarat 380015, India
Merih Palandöken
Affiliation:
Department of Electrical and Electronic Engineering, Izmir Katip Celebi University, Izmir, Turkey
*
Corresponding author:T.K. Upadhyaya Email: trushitupadhyaya.ec@ecchanga.ac.in

Abstract

An engineered novel tunable dual-band metamaterial antenna based on stacked split ring resonator (SRR) array is presented. The μ-negative SRR array present at two sublayers of stacked microstrip patch antenna substrate adds tuning capability to the antenna with marginal trade-off between antenna gain and cross-polarization. If the size of resonator element is considerably smaller than resonance wavelength, ideally lesser than λ/10, the resonator would support the resonating mode of antenna. Compact SRR array embedded in radiator facilitate the antenna tuning to intended allocated spectrum of L5- and S-band frequencies without modifying external dimensions of patch antenna, which in turn helps the satellite payload design. The variations in SRR array dimensions and inter-element spacing are subsequently utilized to maintain the antenna gain and voltage-standing wave ratio. The proposed design of inset fed antenna, matched at 50 Ω, was validated by experimental results and it is suitable for global positioning satellite applications.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett., 85 (2000), 39663969.CrossRefGoogle ScholarPubMed
[2]Boardman, A.D.: Negative refraction in perspective. Electromagnetics, 25 (2005), 365389.CrossRefGoogle Scholar
[3]Fujimoto, K.; Morshita, H.: Modern Small Antenna, Cambridge University Press, Cambridge, 2014.Google Scholar
[4]Alu, A.; Engheta, N.: Optical Antenna Theory, Design and Applications, in Optical Antennas, Cambridge University Press, Cambridge, 2013, 1125.Google Scholar
[5]Palandoken, M.: Artificial Materials based Microstrip Antenna Design, in Microstrip Antennas, InTech Open, Croatia, 2013, 4368.Google Scholar
[6]Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 71 (2005), 036617.Google Scholar
[7]Smith, D.R.; Vier, D.C.; Kroll, N.; Schultz, S.: Direct calculation of permeability and permittivity for a left-handed metamaterial. Appl. Phys. Lett., 77 (2000), 22462248.CrossRefGoogle Scholar
[8]Alexopoulos, N.G.; Kyriazidou, C.A.; Contopanagos, H.F.: Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach. IEEE Trans. Microw. Theory Tech., 55 (2008), 254267.CrossRefGoogle Scholar
[9]Chen, X.; Grzegorczyk, T.M.; Pacheco, J.; Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 70 (2004), 016608101660187.CrossRefGoogle ScholarPubMed
[10]Beruete, M. et al. : Electroinductive waves role in left-handed stacked complementary split ring resonators. Opt. Express, 17 (2009), 12741281.CrossRefGoogle Scholar
[11]Upadhyaya, T.K.; Kosta, S.P.; Dwivedi, V.V.; Kosta, Y.P.: Miniaturization of Triband Patch Antenna Using Metamaterials, Computation Intelligence and Communication Networks, Mathura, 2012.Google Scholar
[12]Billoti, F.; Alu, A.; Vegni, L.: Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans. Antennas Propag., 56 (2008), 16401647.CrossRefGoogle Scholar
[13]Yuandan, D.; Toyao, H.; Itoh, T.: Design and characterization of miniaturized patch antenna loaded with complementary split-ring resonators. IEEE Trans. Antennas Propag., 60 (2012), 772775.Google Scholar
[14]Burokur, S.N.; Lustrac, A.D.: Negative index from asymmetric metallic cut wire pairs metamaterials. Int. J. Microw. Wireless Tech., 1 (2009), 521527.Google Scholar
[15]Alu, A.; Billoti, F.; Engheta, N.; Vegni, L.: Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans. Antennas Propag., 55 (2007), 1325.Google Scholar
[16]Ntaikos, D.; Yioultsis, T.: Compact split-ring resonator-loaded multiple-input-multiple-output antenna with electrically small elements and reduced mutual coupling. IET Microw. Antennas Propag., 7 (2012), 421429.CrossRefGoogle Scholar
[17]Palandoken, M.; Grede, A.; Henke, H.: Broadband microstrip antenna with left-handed metamaterials. IEEE Trans. Antennas Propag., 57 (2009), 331338.Google Scholar
[18]Blaha, M.; Machac, J.; Rytir, M.: A double H-shaped resonator and its use as an isotropic ENG metamaterial. Int. J. Microw. Wireless Tech., 1 (2009), 315321.CrossRefGoogle Scholar
[19]Dadgarpour, A.; Zarghooni, B.; Virdee, B.S.; Denidni, T.A.: Beam tilting antenna using integrated metamaterial loading. IEEE Trans. Antennas Propag., 62 (2014), 28742879.CrossRefGoogle Scholar
[20]Alhawari, A.R.H.; Ismail, A.; Mahdi, M.A.: Compact ultra-wideband metamaterial antenna, in Asia-Pacific Conf. on Communications, Auckland, (2013), 6468.Google Scholar
[21]Gheethan, A.; Herzig, P.; Mumcu, G.: Compact 2 × 2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators. IEEE Trans. Antennas Propag., 61 (2013), 30003008.CrossRefGoogle Scholar
[22]Jouvaud, C.; Rosny, J.; Ourir, A.: Adaptive metamaterial antenna using coupled tunable split-ring resonators. Electron. Lett., 49 (2013), 518519.Google Scholar
[23]Sanchez-Fernandez, C.; Quevedo-Teruel, O.; Requena-Carrion, J., Inclan-Sanchez, L.; Rajo-Iglesias, E.: Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microw. Antennas Propag., 4 (2010), 10481055.CrossRefGoogle Scholar