Skip to main content Accessibility help
×
Home

A miniaturized CPW-fed on-chip UWB monopole antenna with band-notch characteristics

  • S. Mandal (a1), A. Karmakar (a2), H. Singh (a1), S. K. Mandal (a1), R. Mahapatra (a1) and A. K. Mal (a1)...

Abstract

This paper presents the design and analysis of a miniaturized, coplanar waveguide-fed ultra-wideband monopole on-chip antenna with band-notch characteristics. By incorporating a “U”-shaped slot in the feedline, a band-notch is realized in the frequency range of 7.9–8.4 GHz to avoid interference from the X-band uplink satellite communication system. The proposed antenna achieved good voltage standing wave ratio (VSWR) characteristics with VSWR value <2 for the frequency range of 2.5–20.1 GHz excluding the band-notched frequencies. The fractional bandwidth and bandwidth ratio are obtained as 156% and 8.04:1, respectively. Dominant factors that affect the center frequency and bandwidth of the notched band are thoroughly investigated. This paper addresses both frequency as well as time domain behavior of the proposed structure. Standard 675 µm thick, high resistive silicon substrate (ρ≥8 kΩ-cm, εr = 11.8, and tan δ = 0.01) is used to design the proposed compact antenna structure with a layout area of 8.5 × 11.5 mm2. Fabrication process steps along with simulated and measured data are presented here. A close analogy between simulated and measured data is observed.

Copyright

Corresponding author

Author for correspondence: S. Mandal, E-mail: sanjuktamandal2@gmail.com

References

Hide All
1.FCC Report and Order of Part 12 Acceptance of Ultra-Wideband (UWB) Systems from 3.1–10.6 GHz. FCC, Washington, D.C., 2002.
2.Pancera, E, Modotto, D, Locatelli, A, Pigozzo, FM and Angelis, CD (2007) Novel Design of UWB Antenna with Band-Notch Capability. European Conference on Wireless Technologies, Munich, Germany.
3.Cho, YJ, Kim, KH, Choi, DH, Lee, SS and Park, S (2006) A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation 54, 14531460.
4.Chattha, HT, Ishfaq, MK, Saleem, Y, Huang, Y and Boyes, SJ (2012) Band-notched ultrawide band planar inverted-F antenna. International Journal of Antennas and Propagation 2012, 16.
5.Lee, HK, Park, JK and Lee, JN (2005) Design of a planar half-circle-shaped UWB notch antenna. Microwave and Optical Technology Letters 47, 911.
6.Lee, JN and Park, JK (2005) Impedance characteristics of trapezoidal ultra-wideband antennas with a notch Function. Microwave and Optical Technology Letters 46, 503506.
7.Modirkhazeni, A, Rezaei, P and Lafmajani, IA (2015) Compact UWB antennas with inverted E- and F-shaped slots for bandnotch characteristics. Progress in Electromagnetics Research Letters 56, 107113.
8.Karmakar, A, Verma, S, Pal, M and Ghatak, R (2012) An ultrawideband monopole antenna with multiple fractal slots with dual band rejection characteristic. Progress in Electromagnetics Research C 31, 185197.
9.Biswas, B, Ghatak, R, Karmakar, A and Poddar, DR (2014) Dual band notched UWB monopole antenna using embedded omega slot and fractal shaped ground plane. Progress in Electromagnetics Research C 53, 177186.
10.Lin, CC, Jin, P and Ziolkowski, RW (2012) Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators. IEEE Transactions on Antennas and Propagation 60, 102109.
11.Cai, ZH, Yang, C and Cai, LY (2014) Wideband monopole antenna with three band-notched characteristics. IEEE Antennas and Wireless Propagation Letters 13, 607610.
12.Mewara, HS, Mahendra, DJ, Sharma, M and Deegwal, JK (2018) A printed monopole ellipzoidal UWB antenna with four band rejection characteristics. AEU-International Journal of Electronics and Communications 83, 222232.
13.Wu, Z-H, Wei, F, Shi, X-W and Li, W-T (2013) A compact quad band-notched UWB monopole antenna loaded one lateral L-shaped slot. Progress in Electromagnetics Research 139, 303315.
14.Islam, MT, Azim, R and Mobashsher, AT (2012) Triple band-notched planar UWB antenna using parasitic strips. Progress in Electromagnetics Research 129, 161179.
15.Tang, M-C, Xiao, S, Deng, T, Wang, D, Guan, J, Wang, B and Ge, G-D (2011) Compact UWB antenna with multiple band notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation 59, 13721376.
16.Kim, DO, Kim, CY, Park, JK and Jo, NI (2011) Compact band notched ultrawide band antenna using the Hilbert curve slot. Microwave and Optical Technology Letters 53, 26422648.
17.Ojaroudi, M, Ghobadi, C and Nourinia, J (2009) Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application. IEEE Antennas and Wireless Propagation Letters 8, 728731.
18.Ojaroudi, N, Ojaroudi, M and Amir, S (2013) Compact UWB microstrip antenna with satellite down-link frequency rejection in X-band communications by etching an E-shaped step-impedance resonator slot. Microwave and Optical Technology Letters 55, 922926.
19.Jahromi, MN and Komjani, N (2008) Novel fractal monopole wideband antenna. Journal of Electromagnetic Waves and Application 22, 195205.
20.Jahromi, MN (2008) Novel wideband planar fractal monopole antenna. IEEE Transaction on Antennas and Propagation 56, 38443849.
21.Cheema, HM and Shamim, A (2013) The last barrier: on-chip antennas. IEEE Microwave Magazine 14, 7991.
22.Bao, XY, Guo, YX and Xiong, YZ (2012) 60-GHz AMC-based circularly polarized on-chip antenna using standard 0.18-μm CMOS technology. IEEE Transactions on Antennas and Propagation 60, 22342241.
23.Pilard, R, Gianesello, F, Gloria, D, Titz, D, Ferrero, F and Luxey, C (2011) 60 GHz HR SOI CMOS antenna for a System-on-Chip integration scheme targeting high data-rate kiosk applications. IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA.
24.Yang, W, Ma, K, Yeo, KS and Lim, WM (2012) A 60 GHz on-chip antenna in standard CMOS silicon Technology. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Kaohsiung.
25.Yan, JB and Murch, RD (2007) Fabrication of a wideband antenna on a low-resistivity silicon substrate using a novel micromachining technique. IEEE Antennas and Wireless Propagation Letters 6, 476479.
26.Jiang, L, Mao, JF and Leung, KW (2012) A CMOS UWB on-chip antenna with a MIM capacitor loading AMC. IEEE Transactions on Electron Devices 59, 17571764.
27.Kimoto, K and Kikkawa, T (2005) Data transmission characteristics of integrated linear dipole antennas for UWB communication in Si ULSI. IEEE Antennas and Propagation Society International Symposium 1B, 678681.
28.Karmakar, A and Singh, K (2014) Planar monopole ultrawideband antenna on silicon with notched characteristics. International Journal of Computer Applications, ISSN 0975-8887, 1720.
29.Awasthi, YK, Sharma, M, Singh, H, Kumar, R and Kumari, S (2016) CPW-fed dual notched-band UWB antenna on silicon substrate. International Journal of Innovative Research in Computer and Communication Engineering 4, 132138.
30.Chen, ZN, See, TSP and Qing, X (2007) Small printed ultrawideband antenna with reduced ground plane effect. IEEE Transaction on Antennas and Propagation 55, 383388.
31.Abbosh, AM and Bialkowski, ME (2008) Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE Transaction on Antennas and Propagation 56, 1723.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed