Skip to main content Accessibility help

Low-power CMOS LNA based on dual resistive-feedback structure with peaking inductor for wideband application

  • Meng-Ting Hsu (a1), Shih-Yu Hsu (a1) and Yu-Hwa Lin (a1)


This paper presents a low-power and low-noise amplifier (LNA) with resistive-feedback configuration. The design consists of two resistive-feedback amplifiers. In order to reduce the chip area, a resistive-feedback inverter is adopted for input matching. The output stage adopts basic topology of an RC feedback for output matching, and adds two inductors for inductive peaking at the high band. The implemented LNA has a peak gain of 10.5 dB, the input reflection coefficient S11 is lower than −8 dB and the output reflection S22 is lower than −10.8 dB, and noise figure of 4.2–5.2 dB is between 1 and 10 GHz while consuming 12.65 mW from a 1.5 V supply. The chip area is only 0.69 mm2 and the figure of merit is 6.64 including the area estimation. The circuit was fabricated in a TSMC 0.18 um CMOS process.


Corresponding author

Corresponding author: M.-T. Hsu Email:


Hide All
[1]Ismail, A.; Abidi, A.: A 3 to 10 GHz LNA using a wideband LC-ladder matching network, in Proc. 2004 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers. (ISSCC 2004), 2004, Vol. 1, pp. 384534.
[2]Bevilacqua, A.; Niknejad, A.M.: An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers, in Proc. 2004 IEEE Int. Conf. Solid-State Circuits, Digest of Technical Papers( ISSCC 2004), 2004, Vol. 1, pp. 382533.
[3]Ellinger, F.; Barras, D.; Schmatz, M.; Jackel, H.: A low-power DC-7.8 GHz BiCMOS LNA for UWB and optical communication, in IEEE MTT-S Int. Digest, June 2004, pp. 1316.
[4]Shiramizu, N.; Masuda, T.; Tanabe, M.; Washio, K.: A 3–10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25-um_ SiGe BiCMOS technology, in IEEE RFIC Symp. Digest, Long Beach, CA, June 2005, pp. 3942.
[5]Lee, J.; Cressler, J.D.: A 3–10 GHz SiGe resistive feedback low noise amplifier for UWB applications, in IEEE RFIC Symp. Digest, Long Beach, CA, June 2005, pp. 545548.
[6]Park, Y.; Lee, C.-H.; Cressler, J.D.; Laskar, J.; Joseph, A.: A very low power SiGe LNA for UWB application, in IEEE MTT-S Int. Digest, June 2005, pp. 10411044.
[7]Zhang, F.; Kinget, P.: Low power programmable-gain CMOS distributed LNA for ultra-wideband applications, in IEEE Symp. VLSI Circuits, Digest of Technical Papers., 2005, pp. 7881.
[8]Bevilacqua, A.; Sandner, C.; Gerosa, A.; Neviani, A.: A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers. IEEE Microw. Wirel. Compon. Lett., 16 (3) (2006), 134136.
[9]Chao, S.-F.; Kuo, J.-J.; Lin, C.-L.; Tsai, M.-D.; Wang, H.: A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique. IEEE Microw. Wirel. Compon. Lett., 18 (7) (2008), 482484.
[10]Chen, Y.J.E.; Huang, Y.I.: Development of integrated broad-band CMOS low-noise amplifiers. IEEE Trans. Circuits Syst. I: Regular Papers, 54 (2007), 21202127.
[11]Hsu, M.-T.; Hsu, S.-Y.: A low power CMOS LNA for 1–10 GHz application, in Proc. 2009 Asia-Pacific Microwave Conf. (APMC 2009), 2009 pp. 11321135.
[12]Gramegna, G.; Erratico, G.: A Sub-1-dB NF ±2.3-kV ESD-Protected 900-MHz CMOS LNA. IEEE J. Solid-State Circuit 36 (7) (2001).
[13]Fang, C.; Law, C.L.; Wang, J.H.: A 3.1–10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power. IEEE Microw. Wirel. Compon. Lett., 17 (2007), 295297.
[14]Park, B.; Choi, S.; Hong, S.: A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems. IEEE Microw. Wirel. Compon. Lett., 20 (2010), 4042.
[15]Fu, C.-T.; Kuo, C.-N.; Taylor, S.S.: Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Trans. Microw. Theory Tech., 58 (2010), 795806.
[16]Lin, Y.S. et al. : Analysis and design of a CMOS UWB LNA with dual RLC branch wideband input matching network. IEEE Trans. Microw. Theory Tech., 58 (2) (2010), 287296.
[17]Park, Y.; Lee, C.-H.; Cressler, J.D.; Laskar, J.: The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation. IEEE Trans. Microw. Theory Tech., 54 (4) (2006), 1687–1697.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed