Skip to main content Accessibility help

High-selective band-reject FSS with dual-band near-zero refractive index based on complementary dual-layer symmetry resonator-ring

  • Rui Xi (a1), Long Li (a1), Yan Shi (a1), Cheng Zhu (a1) and Xi Chen (a1)...


A new band-reject frequency-selective surface (FSS) based on dual-band near-zero refractive index metamaterial (ZIM) design is presented in this paper. Consisting of a planar array of complementary dual-layer symmetry resonant ring, the proposed FSS exhibits a high-selective band-reject filtering response. From the viewpoint of effective medium, the subwavelength FSS is characterized by near-zero effective magnetic permeability and near-zero effective electric permittivity in two different operational bands, respectively. The corresponding resonant behavior and E-field distributions are analyzed in detail. A prototype of the proposed FSS working in X-band is fabricated and measured. The simulation and experiment results verify the effectiveness and correctness of the ZIM-based design method.


Corresponding author

Corresponding author: L. Li Email:


Hide All
[1]Munk, B.A.: Frequency Selective Surfaces Theory and Design, John Wiley & Sons Press, New York, 2000, 1st edn.
[2]Werner, D.H.; Ganguly, S.: An overview of fractal antenna engineering research. IEEE Antennas Propag., 45 (2003), 3857.
[3]Wu, T.K. (ed.): Frequency Selective Surface and Grid Array, Wiley-Interscience, New York, 1995, 1st edn.
[4]Yan, M. et al. : A tri-band, highly selective, bandpass FSS using cascaded multilayer loop arrays. IEEE Trans. Antennas Propag., 64 (2016), 20462049.
[5]Zhang, T.; Ouslimani, H.H.; Letestu, Y.; Le Bayon, A.; Darvil, L.R.: A low profile multilayer seventh order band-pass frequency selective surface (FSS) for millimeter-wave application, in Proc. IEEE 13th Annu. Wireless and Microwave Technology Conf., April 2012, 14.
[6]Omar, A.A.; Shen, Z.: Multiband high-order bandstop 3-D frequency-selective structures. IEEE Trans. Antennas Propag., 64 (2016), 22172226.
[7]Zhu, X.C. et al. : Design of a bandwidth-enhanced polarization rotating frequency selective surface. IEEE Trans. Antennas Propag., 62 (2014), 940944.
[8]Zhou, H.; Hong, W.; Tian, L.; Jiang, M.: A polarization-rotating SIW reflective surface with two sharp band edges. IEEE Antennas Wireless Propag. Lett., 15 (2016), 130134.
[9]Rashid, A.K.; Shen, Z.: A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans. Antennas Propag., 58 (2010), 12201226.
[10]Rashid, A.K.; Shen, Z.: Bandpass frequency selective surface based on a two-dimensional periodic array of shielded of microstrip lines, in Proc. IEEE Antennas Propag. Symp., July, 2010, 14.
[11]Enoch, S.; Tayeb, G.; Sabouroux, P.; Guérin, N.; Vincent, P.: A metamaterial for directive emission. Phys. Rev. Lett., 89 (2002), 213902.
[12]Ziolkowski, R.W.: Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E, 70 (2004), 046608-1046608-12.
[13]Li, D.Y.; Szabó, Z.; Qing, X.M.; Li, E.P.; Chen, Z.N.: A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans. Antennas Propag., 60 (2012), 60186023.
[14]Ju, J., Kim, D.; Lee, W.J.; Choi, J.I.: Wideband high-gain antenna using metamaterial superstrate with the zero refractive index. Microw. Opt. Technol. Lett., 51 (2009), 19731976.
[15]Silveirinha, M.; Engheta, N.: Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett., 97 (2006), 157403.
[16]Vojnovic, N.; Jokanovic, B.; Radovanovic, M.; Medina, F.; Mesa, F.: Modeling of nonresonant longitudinal and inclined slots for resonance tuning in ENZ waveguide structures. IEEE Trans. Antennas Propag., 63 (2015), 51075113.
[17]Smith, D.R.; Pendry, J.B.: Homogenization of metamaterials by field averaging. J. Opt. Soc. Am. B, 23 (2006), 391403.
[18]Szabó, Z.; Park, G.H.; Hedge, R.; Li, E.P.: A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Tech., 58 (2010), 26462653.
[19]Luebbers, R.J.; Munk, B.A.: Some effects of dielectric loading on periodic slot arrays. IEEE Trans. Antennas Propag., 26 (1978), 536542.
[20]Schurig, D.; Mock, J.J.; Smith, D.R.: Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 88 (2006), 041109.
[21]Katsarakis, N.; Koschny, T.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M.: Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett., 84 (2004), 29432945.
[22]Kong, J.A.: Electromagnetic Wave Theory, John Wiley & Sons, New York, 1990, 2st edn.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed