Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-19T06:03:21.041Z Has data issue: false hasContentIssue false

GaN HFET MMICs with integrated Schottky-diode for highly efficient digital switch-mode power amplifiers at 2 GHz

Published online by Cambridge University Press:  19 April 2011

Stephan Maroldt*
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rüdiger Quay
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Christian Haupt
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rudolf Kiefer
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Dirk Wiegner
Affiliation:
Alcatel-Lucent Bell Labs, Radio Communications-Department, ZFZ/RA4, Stuttgart, Germany.
Oliver Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
*
Corresponding author: S. Maroldt Email: stephan.maroldt@iaf.fraunhofer.de

Abstract

This work describes the integration of Schottky diodes into fast GaN MMIC process technology suitable for the realization of switch-mode power amplifier core chips for class-S operation at 2 GHz. With the demonstration of this technology, the so-called third-quadrant issue, which reduces the efficiency in band pass-Δ-Σ class-S operation can be diminished on device level. Compared to a hybrid diode assembly, the broadband properties of the amplifier module with on-chip-integrated diode can be improved by the reduction of parasitic losses. The GaN heterostructure field effect transistors (HFETs) with integrated series diode show a cut-off frequency of 28 GHz with drain breakdown voltages exceeding −100 and +100 V and comparable large signal performance to conventional GaN HFETs at 10 GHz. MMIC core chips for class-D and class-S switch-mode power amplifier modules are demonstrated for the operation at mobile communication frequencies between 0.45 and 2 GHz and signal bit rates up to 8 Gbps. The circuits yield broadband output power levels between 4 and 9 W with efficiencies of up to 80%.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aflaki, P.; Negra, R.; Ghannouchi, F.M.: Enhanced architecture for microwave current-mode class-D amplifiers applied to the design of an S-band GaN-based power amplifier. IET Microw., Antennas Propag., 3 (2009), 9971006.CrossRefGoogle Scholar
[2]Al Tanany, A.; Sayed, A.; Boeck, G.: Broadband GaN switch mode class E power amplifier for UHF applications. IEEE MTT-S Int. Microw. Symp., (2009), 761764.Google Scholar
[3]Maroldt, S.; Wiegner, D.; Vitanov, S.; Palankovski, V.; Quay, R.; Ambacher, O.: Efficient AlGaN/GaN linear and digital-switch-mode power amplifiers for operation at 2 GHz. IEICE Trans. Electron., E93-C (2010), 12381244.CrossRefGoogle Scholar
[4]Meliani, C.; Flucke, J.; Wentzel, A.; Würfl, J.; Heinrich, W.; Tränkle, G.: Switch-mode amplifier ICs with over 90% efficiency for class-S PAs using GaAs-HBTs and GaN-HEMTs. IEEE MTT-S Int. Microw. Symp., (2008), 751754.Google Scholar
[5]Maroldt, S. et al. : High efficiency digital GaN MMIC power amplifiers for future switch-mode based mobile communication systems. Proc. CSICS, (2009), 14.Google Scholar
[6]Quay, R.: Gallium Nitride Electronics, Springer-Verlag, Berlin, Heidelberg, 2008.Google Scholar
[7]Waltereit, P. et al. : AlGaN/GaN epitaxy and technology. Int. J. Microw. Wirel. Technol., 2 (2010), 311.CrossRefGoogle Scholar
[8]Samulak, A.; Fischer, G.; Weigel, R.: Basic nonlinear analysis of class-s power amplifiers based on GaN switching transistors. GeMiC 2009.CrossRefGoogle Scholar
[9]Berroth, M.; Schmidt, M.; Heck, S.; Braeckle, A.; Groezing, M.: A 1.6 GHz switch mode power amplifier with continuous-time bandpass delta-sigma modulator, in 52nd IEEE Int. Midwest Symp. on Circuits and Systems (MWSCAS), (2009), 10511054.Google Scholar
[10]Ostrovskyy, P.; Borokhovych, Y.; Fischer, G.; Gustat, H.; Scheytt, C.: A 2.2 GS/s 900 MHz bandpass delta-sigma modulator for class-S power amplifier, in IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2009.CrossRefGoogle Scholar
[11]Bahat-Treidel, E.; Lossy, R.; Würfl, J.; Tränkle, G.: AlGaN/GaN HEMT with integrated recessed Schottky-drain protection diode. IEEE Electron Device Lett., 30 (2009), 901903.CrossRefGoogle Scholar
[12]Oka, T.; Nozawa, T.: AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett., 29 (2008), 668670.CrossRefGoogle Scholar
[13]Ruonan, W.; Yong, C.; Chi-Wai, T.; Lau, K.M.; Chen, K.J.: Enhancement-mode Si3N4/AlGaN/GaN MISHFETs. IEEE Electron Device Lett., 27 (2006), 793795.Google Scholar
[14]Waltereit, P. et al. : GaN HEMT and MMIC development at Fraunhofer IAF: performance and reliability. Phys. Status Solidi (A), 206 (2009), 12151220.CrossRefGoogle Scholar