Skip to main content Accessibility help
×
Home

Equivalent circuit model of reliable RF-MEMS switches for component synthesis, fabrication process characterization and failure analysis

  • Núria Torres Matabosch (a1) (a2), Fabio Coccetti (a1) (a2), Mehmet Kaynak (a3), Beatrice Espana (a4), Bernd Tillack (a3) and Jean-Louis Cazaux (a4)...

Abstract

An accurate and very large band (30–110 GHZ) lumped element equivalent circuit model of capacitive RF-MEMS components based on a standard 250 nm BiCMOS technology is presented. This model is able to predict the effect of the fabrication process dispersion, synthesize new components and monitor the failure mechanisms. Moreover, a reliability study is performed in order to define a screening criterion (VPOUT > 36 V and |VPIN − VPOUT| ≤ 1) based on which a selection of the devices with optimal performance in terms of RF and lifetime performance can be made. Finally, a very quick effective technique (non-intrusive) is proposed to carry out this operation.

Copyright

Corresponding author

Corresponding author: N. Torres Matabosch E-mail: nuria.torres.matabosch@gmail.com

References

Hide All
[1]De Wolf, I.: Reliability of MEMS, in Proc. 7th Int. Conf. Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSime 2006), 2006, 1–6.
[2]Lucyszyn, S. (Ed.): Advanced RF MEMS, Cambridge University Press, Cambridge, 2010.
[3]Bordas, C. et al. : Carbon nanotube based dielectric for enhanced RF MEMS reliability, in 2007 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Honolulu, Hawaii, June 2007, 375–378.
[4]Goldsmith, C. et al. : Charging characteristics of ultra-nano-crystalline diamond in RF MEMS capacitive switches, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Anaheim, California, May 2010, 1246–1249.
[5]Goldsmith, C.L.: United States Patent no: 6608268B1, August 2003.
[6]Feixiang, K. et al. : A ruthenium-based multimetal-contact RF MEMS switch with a corrugated diaphragm. J. Microelectromech. Syst., 17 (6) (2008), 14471459.
[7]Nguyen, C.T.C.: The harsh environment robust micromechanical technology (HERMiT) program: success and some unfinished business, in 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Montreal, Canada, June 2012, 1–3.
[8]Kaynak, M. et al. : BiCMOS embedded RF-MEMS switch for above 90 GHz applications using backside integration technique, in 2010 IEEE Int. Electron Devices Meeting (IEDM), 2010, 36.5.1–36.5.4.
[9]Kaynak, M. et al. : RF-MEMS switch module in a 0.25 µm BiCMOS technology, in 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 16–18 January 2012, 25–28.
[10]Kaynak, M. et al. : Packaged BiCMOS embedded RF-MEMS switches with integrated inductive loads, 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 17–22 June 2012, 1–3.
[11]Torres Matabosch, N. et al. Accurate and Versatile. Equivalent Circuit Model for RF-MEMS Circuit. Optimization in BiCMOS. Technology, in 2012 European Microwave Integrated Circuits Conf. (EuMIC), October 2012.
[12]Dickson, T.O. et al. : 30–100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. Microwave Theory and Techniques, 53 (1) (2005), 123133.
[13]Simons, R.N.: Coplanar Waveguide Circuits Components & Systems, John Wiley & Sons, New York, 2012.
[14]Vendier, O.: RF-MEMS for space applications, in 2012 European Microwave Integrated Circuits Conf. (EuMIC), RF-MEMS for Mm-wave Reconfigurable ICs Workshop, November 2012.
[15]Torres Matabosch, N.: Design for reliability applied to RF-MEMS devices and circuits issued from different TRL environments, Ph.D. dissertation, Université Paul Sabatier – Toulouse III, 2013.
[16]Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology, Wiley, New York, 2003, 87104.

Keywords

Equivalent circuit model of reliable RF-MEMS switches for component synthesis, fabrication process characterization and failure analysis

  • Núria Torres Matabosch (a1) (a2), Fabio Coccetti (a1) (a2), Mehmet Kaynak (a3), Beatrice Espana (a4), Bernd Tillack (a3) and Jean-Louis Cazaux (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed