Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T02:46:10.683Z Has data issue: false hasContentIssue false

Design, modeling and characterization of MMIC integrated cascode cell for compact Ku-band power amplifiers

Published online by Cambridge University Press:  24 May 2013

A. Déchansiaud*
Affiliation:
XLIM, UMR CNRS 6172, 7 rue Jules Valles, 19100 Brive la Gaillarde, France. Phone: +33 561 111 122
R. Sommet
Affiliation:
XLIM, UMR CNRS 6172, 7 rue Jules Valles, 19100 Brive la Gaillarde, France. Phone: +33 561 111 122
T. Reveyrand
Affiliation:
XLIM, UMR CNRS 6172, 7 rue Jules Valles, 19100 Brive la Gaillarde, France. Phone: +33 561 111 122
D. Bouw
Affiliation:
United Monolithic Semiconductors, Batiment Charmille, Parc SILIC de Villebon-Courtaboeuf, 10 avenue du Quebec, 91140 Villebon-sur-Yvette, France
C. Chang
Affiliation:
United Monolithic Semiconductors, Batiment Charmille, Parc SILIC de Villebon-Courtaboeuf, 10 avenue du Quebec, 91140 Villebon-sur-Yvette, France
M. Camiade
Affiliation:
United Monolithic Semiconductors, Batiment Charmille, Parc SILIC de Villebon-Courtaboeuf, 10 avenue du Quebec, 91140 Villebon-sur-Yvette, France
F. Deborgies
Affiliation:
European Space Agency, Keplerlaan 1 - NL 2201 AZ Noordwijk ZH, Netherlands
R. Quéré
Affiliation:
XLIM, UMR CNRS 6172, 7 rue Jules Valles, 19100 Brive la Gaillarde, France. Phone: +33 561 111 122
*
Corresponding author: A. Déchansiaud Email: adeline.dechansiaud@nxp.com

Abstract

This paper reports on the design of a new power cell dedicated to Ku-band power amplifier (PA) applications. This cell called “integrated cascode” has been designed in order to propose a strong decrease in terms of circuit size for PA. The technology used relies on 0.25-μm GaAs pseudomorphic high electron mobility transistors (PHEMT) of United Monolithic Semiconductors (UMS) foundry. A distributed approach is proposed in order to model this power cell. The challenge consists of obtaining, with a better shape factor (ratio between the vertical and horizontal sizes of the transistor), the same performances than a single transistor with the same gate width. In order to design a 2W amplifier, we have used two 12 × 100 μm transistors. Cascode vertical size is 413 μm whereas a transistor with the same gate width exhibits a vertical size of 790 μm. Therefore, the shape factor is nearly one as compared to a shape factor of 4 for a classical parallel architecture. This new device allows us to decrease the Monolithic microwave integrated circuit amplifier area of 40% compared to amplifier based on single transistors.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Lin, C.H. et al. : A compact 6.5-W PHEMT MMIC power Amplifier for Ku-band applications. IEEE Microw. Wirel. Compon. Lett., 17(2) (2007), 154156.Google Scholar
[2]Zhang, Q.; Brown, S.A.: Fully monolithic 8 watt Ku-band HPA. IEEE MTT-S Int. Microw. Symp. Digest, 2 (2004), 11611164.Google Scholar
[3]Bessemoulin, A.; Suh, Y.H.; Richardson, D.; Mahon, S.J.; Harvey, J.T.: A compact 500 mW Ku-band power amplifier MMIC in 3 × 3 mm2 quad flat (QFN) packages, in Proc. 1st European Microwave Integrated Circuits Conf., 2006, 229232.Google Scholar
[4]UMS, pph25x design kit, Internal report.Google Scholar
[5]Martin, A. et al. : Balanced AlGaN/GaN HEMT cascode cells: design method for wideband distributed amplifiers. Electron. Lett., 44 (2008), 116117.Google Scholar
[6]Fraysse, J.P.; Viaud, J.P.; Campovecchio, M.; Auxemery, P.; Quere, R.: A 2 W, high efficiency, 2-8 GHz, cascode HBT MMIC distributed PA. IEEE MTT-S Int. Microw. Symp. Digest, 1 (2000), 529532.Google Scholar
[7]Darwish, A.; Hung, A.; Viveiros, E.; Kao, M.: Multi-octave GaN MMIC amplifier. IEEE MTT-S Int. Microw. Symp. Digest, 2010, 141144.Google Scholar
[8]Dennler, P.; van Raay, F.; Seelmann-Eggebert, M.; Quay, R.; Ambacher, O.: Modeling and realization of GaN-based dual-gate HEMTs and HPA MMICs for Ku-band applications. IEEE MTT-S Int. Microw. Symp. Digest, 2011, 14.Google Scholar
[9]Larique, E.; et al. : Linear and nonlinear FET modeling applying an electromagnetic and electrical hybrid software. IEEE MTT-S Int. Microw. Symp. Digest, 47 (1999), 915918.Google Scholar
[10]Sowlati, T.; Leenaerts, D.M.W.: A 2.4-GHz 0.18-µm CMOS self-biased cascode power amplifier. IEEE J. Solid-State Circuits, 38 (2003), 13181324.Google Scholar
[11]Suarez, A.: Analysis and Design of Autonommous Microwave Circuits, Stability Analysis Using Harmonic Balance, chapter 6, Wiley-IEEE Press January 2009, University of Cantabria, Spain. 343350.Google Scholar
[12]UMS, Low Cost Ku-Band High Power Amplifiers Development for VSAT Ground Terminals, Internal Report, the department C2S2 of XLIM laboratory, at University of Limoges, 2009Google Scholar
[13]Dechansiaud, A.: Conception, modélisation et caractérisation de cellules de puissance innovantes en technologie MMIC pour des applications spatiales, PhD report, at the department C2S2 of XLIM laboratory, University of Limoges, 2012Google Scholar