Skip to main content Accessibility help
×
Home

Compact dual-band antennas with large frequency ratio and bandwidth enhancement for wireless applications

  • Abdelheq Boukarkar (a1), Xian Qi Lin (a1) and Yuan Jiang (a1)

Abstract

In this paper, compact single-feed dual-band antennas for different wireless applications are proposed. First, a dual-band antenna with a comparatively large frequency ratio of 2.58 is designed. Then, a novel dual-band antenna is introduced in order to enhance the upper frequency band. The technique consists of modifying the feed line structure, which leads to a 9.23% of impedance bandwidth at the central frequency of 6.5 GHz instead of 2.06%. The designed antennas are fabricated and tested in the laboratory and in a small anechoic chamber in order to measure their reflection coefficient, gains, and efficiencies. Good agreement between simulated and measured results is obtained. The designed antennas are particular because they have low profile, very simple single-feed technique, can be designed for large frequency ratios, and also the bandwidth can be clearly enhanced. Therefore, they can be used for different wireless applications.

Copyright

Corresponding author

Corresponding author: X.Q. Lin, Email: xqlin@uestc.edu.cn

References

Hide All
[1] Quan, X.; Li, R.; Cui, Y.; Tentzeris, M.: Analysis and design of a compact dual-band directional antenna. IEEE Antennas Wireless Propag. Lett., 11 (2012), 547550.
[2] Zhu, X.Q.; Guo, Y.X.; Wu, W.: A novel dual-band antenna for wireless communication applications. IEEE Antennas Wireless Propag. Lett., 15 (2016), 516519.
[3] Zhu, X.Q.; Guo, Y.X.; Wu, W.: A compact dual-band antenna for wireless body-area network applications. IEEE Antennas Wireless Propag. Lett., 15 (2016), 98101.
[4] Avser, B.; Rebeiz, G.M.: Tunable dual-band antennas for 0.7–1.1-GHz and 1.7–2.3-GHz carrier aggregation systems. IEEE Trans. Antennas Propag., 63 (2015), 14981504.
[5] Smith, T.; Gothelf, U.; Kim, O.S.; Breinbjerg, O.: An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L and Ka-band satellite communication antenna. IEEE Trans. Antennas Propag., 62 (2014), 661668.
[6] Feng, L.Y.; Leung, K.W.: Dual-frequency folded-parallel-plate antenna with large frequency ratio. IEEE Trans. Antennas Propag., 64 (2016), 340345.
[7] He, K.; Gong, S.X.; Gao, F.: A wideband dual-band magneto-electric dipole antenna with improved feeding structure. IEEE Antennas Wireless Propag. Lett., 13 (2014), 17291732.
[8] Chen, C.H.; Wang, X.L.; Wu, W.: Compact single-feed dual-frequency dual-polarization microstrip antenna. Electron. Lett., 46 (2010), 13621363.
[9] Meng, F.; Sharma, S.K.: Single feed dual-frequency orthogonal linear- polarization microstrip patch antenna with large frequency ratio, in Int. Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, 2015, 836–837.
[10] Meng, F.; Sharma, S.K.: A dual-band high-gain resonant cavity antenna with a single layer superstrate. IEEE Trans. Antennas Propag., 63 (2015), 23202325.
[11] Li, X.; Yang, S.; Nie, Z.: A novel dual-band patch antenna with high frequency band ratio. Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. (CSQRWC), Chengdu, 2013, 269–272.
[12] Liu, S.; Wu, W.; Fang, D.G.: Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application. IEEE Antennas Wireless Propag. Lett., 15 (2016), 468471.
[13] Quan, X.; Li, R.; Jin, G.; Tentzeris, M.M.: Development of a directional dual-band planar antenna for wireless applications. IET Microw. Antennas Propag., 7 (2013), 245250.
[14] Li, M.; Lin, X.Q.; Chin, J.Y.; Liu, R.; Cui, T.J.: A novel miniaturized printed planar antenna using split-ring resonator. IEEE Antennas Wireless Propag. Lett., 7 (2008), 629631.
[15] Cabedo-Fabres, M.; Antonino-Daviu, E.; Valero-Nogueira, A.; Bataller, M.F.: The theory of characteristic modes revisited: a contribution to the design of antennas for modern applications. IEEE Antennas Propag. Mag., 49 (2007), 5268.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed