Skip to main content Accessibility help
×
Home

Closed-form model to determine the co-axial probe reactance of an equilateral triangular patch antenna

  • Manotosh Biswas (a1) and Mihir Dam (a2)

Abstract

A simple closed-form analytical formula is proposed to compute the probe reactance of an equilateral triangular patch antenna. The variation of the probe reactance with the variation of antenna dimension, substrate electrical parameters, and probe location is examined thoroughly. The computed values employing the present model show excellent agreement with experimental and simulation results.

Copyright

Corresponding author

Author for correspondence: Manotosh Biswas, E-mail: mbiswas@ieee.org

References

Hide All
1.Garg, R et al. (2001) Microstrip Antenna Design Handbook. Artech House.
2.Liu, Q, Wang, J and He, Y (2017) Compact balanced band pass filter using isosceles right triangular patch resonator. Electronics Letters 53, 253254.
3.Yadav, S et al. (2016) Design of band-rejected UWB planar antenna with integrated Bluetooth band. IET Microwaves, Antennas and Propagation 10, 15281533.
4.Liu, HW, Cheng, ZQ and Sun, LL (2006) Dual-mode triangular-patch band pass filter using spur-lines. Electronics Letters 42, 762763.
5.Hong, J-S and Lancaster, MJ (2004) Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Transactions on Microwave Theory and Techniques 52, 12371243.
6.Luo, Q et al. (2016) Dual circularly polarized equilateral triangular patch array. IEEE Transactions on Antennas and Propagation 64, 22552262.
7.Sumantyo, JTS and Ito, K (2006) Circularly polarized equilateral triangular patch array antenna for mobile satellite communications. IEE Proceedings – Microwaves, Antennas and Propagation 153, 544550.
8.Sumantyo, JTS, Ito, K and Takahashi, M (2005) Dual-band circularly polarized equilateral triangular-patch array antenna for mobile satellite communications. IEEE Transactions on Antennas and Propagation 53, 34773485.
9.Biswas, M and Mandal, A (2014) Design and development of an equilateral patch sensor for determination of permittivity of homogeneous dielectric medium. Microwave and Optical Technology Letters 56, 10971104.
10.Jobs, M and Rydberg, A (2012) Conformal dual patch antenna for diversity based sensor nodes. Electronics Letters 48, 306307.
11.Zhang, T et al. (2014) Triangular ring antennas for dual-frequency dual-polarization or circular-polarization operations. IEEE Antennas and Wireless Propagation Letters 13, 971974.
12.Chen, J-S (2005) Studies of CPW-fed equilateral triangular-ring slot antennas and triangular-ring slot coupled patch antennas. IEEE Transactions on Antennas and Propagation 53, 22082211.
13.Sung, Y (2010) Investigation into the polarization of asymmetrical-feed triangular microstrip antennas and its application to reconfigurable antennas. IEEE Transactions on Antennas and Propagation 58, 10391046.
14.Zhang, H et al. (2008) A compact MIMO antenna for wireless communication. IEEE Antennas and Propagation Magazine 50, 104107.
15.Helszajn, J and James, DS (1978) Planar triangular resonators with magnetic walls. IEEE Transactions on Microwave Theory and Techniques 26, 95100.
16.Sharma, AK and Bhat, B (1982) Analysis of triangular microstrip resonator. IEEE Transactions on Microwave Theory and Techniques 30, 20292031.
17.Keuster, EF and Chang, DC (1983) A geometrical theory for the resonant frequencies and Q factors of some triangular microstrip patch antennas. IEEE Transactions on Antennas and Propagation 31, 2734.
18.Dahele, JS and Lee, KF (1987) On the resonant frequencies of the triangular patch antenna. IEEE Transactions on Antennas and Propagation 35, 100101.
19.Gang, X (1989) On the resonant frequencies of microstrip antennas. IEEE Transactions on Antennas and Propagation 37, 245247.
20.Lee, KF, Luk, KM and Dahele, JS (1988) Characteristics of the equilateral triangular patch antenna. IEEE Transactions on Antennas and Propagation 36, 15101518.
21.Chen, W, Lee, KF and Dahele, JS (1992) Theoretical and experimental studies of the resonant frequencies of equilateral triangular microstrip antenna. IEEE Transactions on Antennas and Propagation 40, 12531256.
22.Hassani, HR and Mirshekar Syahkal, D (1992) Analysis of triangular patch antennas including radome effects. IEE Proceedings H 139, 251256.
23.Biswas, M and Dam, M (2018) CAD oriented improved cavity model to investigate a 30°–60°–90° right angled triangular patch antenna on single, composite and suspended substrate for the application in portable wireless equipments. IET Microwaves, Antennas & Propagation 12, 425434.
24.Karaboğa, D et al. (1997) Simple and accurate effective side length expression obtained by using a modified genetic algorithm for the resonant frequency of an equilateral triangular microstrip antenna. International Journal of Electronics 83, 99108.
25.Gurel, CS and Yazgan, E (2000) New computation of the resonant frequency of a tunable equilateral triangular microstrip patch. IEEE Transactions on Microwave Theory and Techniques 48, 334338.
26.Lim, EG et al. (2002) An efficient formula for the input impedance of a microstrip right-angled isosceles triangular patch Antenna. IEEE Antennas and Wireless Propagation Letters 1, 1821.
27.Guha, D and Siddiqui, JY (2004) Resonant frequency of equilateral triangular microstrip patch antenna with and without air gaps. IEEE Transactions on Antennas and Propagation 52, 21742177.
28.Nasimuddin, KE and Verma, AK (2005) Resonant frequency of an equilateral triangular microstrip antenna. Microwave and Optical Technology Letters 47, 485489.
29.Biswas, M and Guha, D (2009) Input impedance and resonance characteristic of superstrate loaded triangular microstrip patch. IET Microwaves, Antennas & Propagation 3, 9298.
30.Biswas, M and Mandal, A (2010) CAD model to compute the input impedance of an equilateral triangular microstrip patch antenna with radome. Progress in Electromagnetics Research M 12, 247257.
31.Olaimat, MM and Dib, NI (2011) Improved formulae for the resonant frequencies of triangular microstrip patch antennas. International Journal of Electronics 98, 407424.
32.Olaimat, MM and Dib, NI (2011) A study of 15°–75°–90° angles triangular patch antenna. Progress in Electromagnetics Research Letters 21, 19.
33.Biswas, M and Dam, M (2012) Fast and accurate model of equilateral triangular patch antennas with and without suspended substrates. Microwave and Optical Technology Letters 54, 26632668.
34.Biswas, M and Dam, M (2013) Theoretical and experimental studies on characteristics of an equilateral triangular patch antenna with and without variable air. Microwave and Optical Technology Letters 55, 22712277.
35.Maity, S and Gupta, B (2013) Simplified analysis for 30°–60°–90° triangular microstrip antenna. Journal of Electromagnetic Waves and Applications 28, 91101.
36.Maity, S and Gupta, B (2013) Accurate resonant frequency of isosceles right-angled triangular patch antenna. Microwave and Optical Technology Letters 55, 13061308.
37.Maity, S and Gupta, B (2015) Cavity model analysis of 30°–60°–90° triangular microstrip antenna. AEU – International Journal of Electronics and Communications 69, 923932.
38.Guney, K and Erhan, K (2016) Effective side length formula for resonant frequency of equilateral triangular microstrip antenna. International Journal of Electronics 103, 261268.
39.Maity, S and Gupta, B (2017) Approximate investigation on isosceles triangular microstrip antenna in fundamental mode. Microwave and Optical Technology Letters 59, 614618.
40.Dam, M and Biswas, M (2017) Investigation of a right-angled isosceles triangular patch antenna on composite and suspended substrates based on a CAD-oriented cavity model. IETE Journal of Research 63, 248259.
41.Lee, KF and Chen, W (1997) Advances in Microstrip and Printed Antennas. New York: Wiley.
42.Richards, WF, Lo, YT and Harrison, DD (1981) An improved theory for microstrip antennas and applications. IEEE Transactions on Antennas and Propagation 29, 3846.
43.Yano, S and Ishimaru, A (1981) A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Transactions on Antennas and Propagation 29, 7783.
44.Chen, W, Lee, KF and Lee, RQ (1993) Input impedance of coaxially fed rectangular microstrip antena on electrically thick substrate. Microwave and Optical Technology Letters 6, 387390.
45.Aberle, JT, Pozar, DM and Birtcher, CR (1991) Evaluation of input impedance and radar cross section of probe-fed microstrip patch elements using an accurate feed model. IEEE Transactions on Antennas and Propagation 39, 16911696.
46.Davidovitz, MY and Lo, T (1986) Input impedance of a probe-fed circular microstrip antenna with thick substrate. IEEE Transactions on Antennas and Propagation 34, 905911.
47.Chew, WC and Kong, JA (1981) Analysis of a circular microstrip disk antenna with a thick dielectric substrate. IEEE Transactions on Antennas and Propagation 29, 6876.
48.Harrington, RF (1961) Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, p. 228.
49.Alarjani, BM and Dahele, JS (2000) Feed reactance of rectangular microstrip patch antenna with probe feed. Electronics Letters 36, 388390.
50.Guha, D, Biswas, M and Siddiqui, JY (2007) Harrington's formula extended to determine accurate feed reactance of probe-fed microstrip patches. IEEE Antennas and Wireless Propagation Letters 6, 3335.
51.Edwards, TC and Steer, MB (2000) Foundations of Interconnect and Microstrip Design, 3rd Edn. USA: John Wiley & Sons Ltd.
52.Wolff, I and Knoppik, N (1974) Rectangular and circular microstrip disk capacitors and resonators. IEEE Transactions on Microwave Theory and Techniques 22, 857864.
53.Abboud, F, Damiano, JP and Papiernik, A (1990) A new model for calculating the input impedance of coax-fed circular microstrip antennas with and without air gaps. IEEE Transactions on Antennas and Propagation 38, 18821885.
54.Derneryd, AG (1979) Analysis of the microstrip disk antenna element. IEEE Transactions on Antennas and Propagation 27, 660664.
55.Pozar, DM (2012) Microwave Engineering, 4th Edn. USA: John Wiley & Sons, Inc.
56.Ansoft Corp. (2012) High Frequency Structure Simulator.
57.Mittra, R and Yu, W (2004) CFDTD. Artech House.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed