Skip to main content Accessibility help
×
Home

Pi-shaped quarter wavelength structure for multiband applications

Published online by Cambridge University Press:  28 August 2013

Zhebin Wang
Affiliation:
University of Quebec in Rimouski, Electrical Engineering, 300 Allee des Ursulines, Rimouski, Quebec, G5L3A1, Canada. Phone: 1-4187231986 ext: 1737
Chan-Wang Park
Affiliation:
University of Quebec in Rimouski, Electrical Engineering, 300 Allee des Ursulines, Rimouski, Quebec, G5L3A1, Canada. Phone: 1-4187231986 ext: 1737
Corresponding
E-mail address:

Abstract

In this paper, for the first time, we present a novel Pi-shaped structure using resonators for multiband applications. The multiband Pi-shaped structure with LC resonators is analyzed. In order to demonstrate the proposed multiband Pi-shaped structure, one tri-band Wilkinson power divider and one tri-band rat-race coupler are designed, fabricated, and tested. The compactness of the two demonstrated components is well kept by putting all stubs with resonators inside the components themselves. Measured results are in good agreement with the simulated results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Wang, C.Y.; Lu, S.S.; Meng, C.C.; Lin, Y.S.: A GaInP/GaAs HBT micromixer for 2.4/5.2/5.7-GHz multiband WLAN applications. Microw. Opt. Technol. Lett., 43 (1) (2004), 8789.CrossRefGoogle Scholar
[2]Yuan, Z.-X.; Yin, Y.-Z.; Ding, Y.; Li, B.; Xie, J.J.: Multiband printed and double-sided dipole antenna for WLAN/WiMAX applications. Microw. Opt. Technol. Lett., 54 (4) (2012), 10191022.CrossRefGoogle Scholar
[3]Herbertz, K.; Lucyszyn, S.: Two-dimensional metamaterials for dual-band filter applications, in 38th European Microwave Conf., Amsterdam, The Netherlands, 2008.Google Scholar
[4]Tseng, C.-H.; Shao, H.-Y.: A new dual-band microstrip bandpass filter using net-type resonators. IEEE Microw. Wirel. Compon. Lett., 20 (4) (2010), 196198.CrossRefGoogle Scholar
[5]Park, M.-J.: Two-section cascaded coupled line Wilkinson power divider for dual-band applications. IEEE Microw. Wirel. Compon. Lett., 19 (4) (2009), 188190.CrossRefGoogle Scholar
[6]Wu, Y.; Liu, Y.; Zhang, Y.; Gao, J.; Zhou, H.: A dual band unequal Wilkinson power divider without reactive components. IEEE Trans. Microw. Theory Tech., 57 (1) (2009), 216222.Google Scholar
[7]Lin, I-H.; DeVincentis, M.; Caloz, C.; Itoh, T.: Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech., 52 (4) (2004), 11421149.CrossRefGoogle Scholar
[8]Chi, P.-L.; Lee, C.-J.; Itoh, T.: A compact dual-band metamaterial-based rat-race coupler for a MIMO system application, in IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, USA, 2008.Google Scholar
[9]Chiou, Y.-C.; Kuo, J.-T.; Chan, C.-H.: New miniaturized dual-band rat-race coupler with microwave C-section, in IEEE MTT-S Int. Microwave Symp. Digest, Boston, USA, 2009.Google Scholar
[10]Chongcheawchamnan, M.; Patisang, S.; Krairiksh, M.; Robertson, I.D.: Tri-band Wilkinson power divider using a three-section transmission-line transformer. IEEE Microw. Wirel. Compon. Lett., 16 (8) (2006), 452454.CrossRefGoogle Scholar
[11]Chin, K.-S.; Lin, K.-M.; Wei, Y.-H.; Tseng, T.-H.; Yang, Y.-J.: Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines. IEEE Trans. Microw. Theory Tech., 58 (5) (2010), 12131221.CrossRefGoogle Scholar
[12]Edmund Neo, W.C. et al. : Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J. Solid-State Circuits, 41 (9) (2006), 21662176.Google Scholar
[13]Fukuda, A.; Okazaki, H.; Hirota, T.; Yamao, Y.: Novel 900 MHz/1.9 GHz dual-mode power amplifier employing MEMS switches for optimum matching. IEEE Microw. Wirel. Compon. Lett., 14 (3) (2004), 121123.CrossRefGoogle Scholar
[14]Hur, J.; Lee, O.; Lee, C.-H.; Lim, K.; Laskar, J.: A multi-level and multi-band class-D CMOS power amplifier for the LINC system in the cognitive radio application. IEEE Microw. Wirel. Compon. Lett., 20 (6) (2010), 352354.CrossRefGoogle Scholar
[15]Kalim, D.; Negra, R.: Concurrent planar multiharmonic dual-band load coupling network for switching-mode power amplifiers, in IEEE MTT-S Int. Microwave Symp. Digest, Baltimore, USA, 2011.Google Scholar
[16]Wang, Z.; Park, C.-W.: Dual-band GaN HEMT power amplifier using resonators in matching networks, in 12th Annual IEEE Wireless and Microwave Technology (WAMI) Conf., Clearwater, USA, 2011.Google Scholar
[17]Wang, Z.; Park, C.-W.: Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks, in 13th Annual IEEE Wireless and Microwave Technology (WAMI) Conf., Cocoa Beach, USA, 2012.Google Scholar
[18]Kim, I.; Moon, J.; Kim, J.; Jee, S.; Son, J.; Kim, B.: High efficiency 3-stage Doherty power amplifier using gate bias adaption. Int. J. Microw. Wirel. Technol., 3 (1) 2011, 4758.CrossRefGoogle Scholar
[19]Wang, Z.; Park, C.-W.: Multiband Pi-shaped structure with resonators for tri-band Wilkinson power divider and tri-band rat-race coupler, in IEEE MTT-S Int. Microwave Symp. Digest, Montreal, Canada, 2012.Google Scholar
[20]Pozar, D.M.: 5.4 The quarter-wave transformer, In Microwave Engineering, 4th ed., John Wiley & Sons, Inc., USA, 2012, 246247.Google Scholar
[21]Wang, Z.; Park, C.-W.: Novel wideband GaN HEMT power amplifier using microstrip radial stub to suppress harmonics, in IEEE MTT-S Int. Microwave Symp. Digest, Montreal, Canada, 2012.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 20 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-cdnjt Total loading time: 0.233 Render date: 2021-01-18T07:57:39.082Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 07:55:23 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pi-shaped quarter wavelength structure for multiband applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pi-shaped quarter wavelength structure for multiband applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pi-shaped quarter wavelength structure for multiband applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *