Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 1.901 Render date: 2021-04-11T07:43:49.862Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

On the evaluation of the high-frequency load line in active devices

Published online by Cambridge University Press:  18 January 2011

Antonio Raffo
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Gustavo Avolio
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Dominique M.M.-P. Schreurs
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Sergio Di Falco
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Valeria Vadalà
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Francesco Scappaviva
Affiliation:
Microwave Electronics for Communications (MEC) Srl, 40123 Bologna, Italy.
Giovanni Crupi
Affiliation:
Dipartimento di Fisica della Materia e Ingegneria Elettronica, University of Messina, 98166 Messina, Italy.
Bart Nauwelaers
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
Giorgio Vannini
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Corresponding
E-mail address:

Abstract

In this work a de-embedding technique oriented to the evaluation of the load line at the intrinsic resistive core of microwave FET devices is presented. The approach combines vector high-frequency nonlinear load-pull measurements with an accurate description of the reactive nonlinearities, thus allowing one to determine the actual load line of the drain–source current generator under realistic conditions. Thanks to the proposed approach, the dispersive behavior of the resistive core and the compatibility of the voltage and current waveforms with reliability requirements can be directly monitored. Different experiments carried out on a gallium nitride HEMT sample are reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Zolper, J.C.: Wide Bandgap Semiconductor Microwave Technologies: from Promise to Practice, Electron Devices Meeting, Washington, 1999.Google Scholar
[2]Trew, R.J.: Wide bandgap semiconductor transistors for microwave power amplifiers. IEEE Microw. Mag., 1 (2000), 4654.CrossRefGoogle Scholar
[3]Binari, S.C.; Klein, P.B.; Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs. IEEE Proc., 90 (2002), 10481058.CrossRefGoogle Scholar
[4]Ventury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Microw. Theory Tech., 48 (2001), 560566.Google Scholar
[5]Verspecht, J.: Large signal network analysis. IEEE Microw. Mag., 6 (2005), 8292.CrossRefGoogle Scholar
[6]Tasker, P.J.: Practical waveform engineering. IEEE Microw. Mag., 10 (2009), 6576.CrossRefGoogle Scholar
[7]Cripps, S.C.: RF Power Amplifiers for Wireless Communication, Artech House, Norwood, MA, 1999.Google Scholar
[8]Raffo, A.; Scappaviva, F.; Vannini, G.: A new approach to microwave power amplifier design based on the experimental characterization of the intrinsic electron-device load line. IEEE Trans. Microw. Theory Tech., 57 (7) (2009), 17431752.CrossRefGoogle Scholar
[9]Raffo, A.; Vadalà, V.; Di Falco, S.; Scappaviva, F.; Vannini, G.: Hybrid approach to microwave power amplifier design, in Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, Gothenburg, 2010, 2427.Google Scholar
[10]Filicori, F.; Santarelli, A.; Traverso, P.A.; Raffo, A.; Vannini, G.; Pagani, M.: Non-linear RF device modelling in the presence of low-frequency dispersive phenomena. Int. J. RF Microw. CAE, 16 (2006), 8194.CrossRefGoogle Scholar
[11]Schreurs, D.; Verspecht, J.; Nauwelaers, B.; Van de Capelle, A.; Van Rossum, M.: Direct extraction of the non-linear model for two-port devices from vectorial non-linear network analyzer measurements, in European Microwave Conf., Jerusalem, 1997.Google Scholar
[12]Curras-Francos, M.C.; Tasker, P.J.; Fernandez-Barciela, M.; Campos-Roca, Y.; Sanchez, E.: Direct extraction of nonlinear FET Q-V functions from time domain large signal measurements. IEEE Microw. Guid. Wave Letters, 10 (2000), 531533.CrossRefGoogle Scholar
[13]Wright, P.; Sheikh, A.; Roff, C.; Tasker, P.J.; Benedikt, J.: Highly efficient operation modes in GaN power transistors delivering upwards of 81% efficiency and 12W output power, in Microwave Symp. Digest, Atlanta, 2008.Google Scholar
[14]Dambrine, G.; Cappy, A.; Heliodore, F.; Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microw. Theory Tech., 36 (1988), 11511159.CrossRefGoogle Scholar
[15]Resca, D.; Raffo, A.; Santarelli, A.; Vannini, G.; Filicori, F.: Scalable equivalent circuit FET model for MMIC design identified through FW-EM analyses. IEEE Trans. Microw. Theory Tech., 57 (2009), 245253.CrossRefGoogle Scholar
[16]Raffo, A. et al. : Nonlinear dispersive modeling of electron devices oriented to GaN power amplifier design. IEEE Trans. Microw. Theory Tech., 58 (2010), 710718.CrossRefGoogle Scholar
[17]Roh, T.; Kim, Y.; Suh, Y.; Park, W.; Kim, B.: A simple and accurate MESFET channel-current model including bias-dependent dispersion and thermal phenomena. IEEE Trans. Microw. Theory Tech., 45 (1997), 12521255.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 13
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the evaluation of the high-frequency load line in active devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the evaluation of the high-frequency load line in active devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the evaluation of the high-frequency load line in active devices
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *