Skip to main content Accessibility help

A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

  • Susana O.L. Direito (a1), Pascale Ehrenfreund (a2) (a3), Andries Marees (a1), Martijn Staats (a1), Bernard Foing (a4) (a5) and Wilfred F.M. Röling (a1)...


Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold arid desert with mineralogy and erosion processes comparable to those on Mars. Insight into the microbial community composition of this terrestrial Mars analogue provides essential information for the search for life on Mars: including sampling and life detection methodology optimization and what kind of organisms to expect. Soil samples were collected from different locations. Culture-independent molecular analyses directed at ribosomal RNA genes revealed the presence of all three domains of life (Archaea, Bacteria and Eukarya), but these were not detected in all samples. Spiking experiments revealed that this appears to relate to low DNA recovery, due to adsorption or degradation. Bacteria were most frequently detected and showed high alpha- and beta-diversity. Members of the Actinobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes phyla were found in the majority of samples. Archaea alpha- and beta-diversity was very low. For Eukarya, a diverse range of organisms was identified, such as fungi, green algae and several phyla of Protozoa. Phylogenetic analysis revealed an extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya. These comprised radioresistant, endolithic, chasmolithic, xerophilic, hypolithic, thermophilic, thermoacidophilic, psychrophilic, halophilic, haloalkaliphilic and alkaliphilic micro-organisms. Overall, our data revealed large difference in occurrence and diversity over short distances, indicating the need for high-sampling frequency at similar sites. DNA extraction methods need to be optimized to improve extraction efficiencies.


Corresponding author


Hide All
Aller, J.Y. & Kemp, P.F. (2008). Are Archaea inherently less diverse than Bacteria in the same environments? FEMS Microbiol. Ecol. 65(1), 7487.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215(3), 403410.
Amaral Zettler, L.A., Gomez, F., Zettler, E., Keenan, B.G., Amils, R. & Sogin, M.L. (2002). Microbiology: eukaryotic diversity in Spain's river of fire. Nature 417(6885), 137137.
Bamforth, S.S. (2008). Protozoa of biological soil crusts of a cool desert in Utah. J. Arid Environ. 72(5), 722729.
Barns, S.M., Fundyga, R.E., Jeffries, M.W. & Pace, N.R. (1994). Remarkable Archaeal diversity detected in a Yellowstone-National-Park hot-spring environment. Proc. Natl. Acad. Sci. USA 91(5), 16091613.
Borst, A., Peters, S., Foing, B.H., Stoker, C., Wendt, L., Gross, C., Zavaleta, J., Sarrazin, P., Blake, D., Ehrenfreund, P. et al. (2010). Geochemical results from EuroGeoMars MDRS Utah 2009 campaign. In 41th Annual Lunar and Planetary Science Conference, Abstract No. 2744.
Bottos, E.M., Vincent, W.F., Greer, C.W. & Whyte, L.G. (2008). Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10(4), 950966.
Boyd, E.S., Cummings, D.E. & Geesey, G.G. (2007). Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54(1), 170182.
Brambilla, E., Hippe, H., Hagelstein, A., Tindall, B.J. & Stackebrandt, E. (2001). 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5(1), 2333.
Büdel, B. (1999). Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur. J. Phycol. 34(4), 361370.
Büdel, B. & Veste, M. (2008). Biological crusts. In Arid Dune Ecosystems, the Nizzana Sands in the Negev Desert, ed. Breckle, S.-W., Yair, A. & Veste, M., volume 200, pp. 149155, Springer, Berlin Heidelberg.
Büdel, B. & Wessels, D.C.J. (1991). Rock inhabiting blue-green-algae cyanobacteria from hot arid regions. Arch. Hydrobiol. 64, 385398.
Carson, J.K., Campbell, L., Rooney, D., Clipson, N. & Gleeson, D.B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol. 67(3), 381388.
Cary, S.C., McDonald, I.R., Barrett, J.E. & Cowan, D.A. (2010). On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8(2), 129138.
Catling, D.C. & Moore, J.M. (2003). The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus 165(2), 277300.
Chan, M.A., Beitler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature 429(6993), 731734.
Chanal, A., Chapon, V., Benzerara, K., Barakat, M., Christen, R., Achouak, W., Barras, F. & Heulin, T. (2006). The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ. Microbiol. 8(3), 514525.
Chevrier, V. & Mathé, P.E. (2007). Mineralogy and evolution of the surface of Mars: a review. Planet. Space Sci. 55(3), 289314.
Chronic, H. (1990). In Roadside Geology of Utah. Mountain Press, Missoula, Montana, USA.
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology, 5(2), 127140.
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res.–Biogeosci. 112(G04S17), doi:10.1029/2006JG000311.
de la Vega, U.P., Rettberg, P. & Reitz, G. (2007). Simulation of the environmental climate conditions on Martian surface and its effect on Deinococcus radiodurans. Adv. Space Res. 40(11), 16721677.
Díez, B., Pedrós-Alió, C., Marsh, T.L. & Massana, R. (2001). Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67(7), 29422951.
Drees, K.P., Neilson, J.W., Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M. & Maier, R.M. (2006). Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl. Environ. Microbiol. 72(12), 79027908.
Ehrenfreund, P., Röling, W.F.M., Thiel, C., Quinn, R., Septhon, M., Stoker, C., Kotler, M., Direito, S.O.L., Martins, Z., Orzechowska, G.E., Kidd, R. & Foing, B.H. (2011). Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int. J. Astrobiol, in press.
Ehrenfreund, P., Foing, B.H., Stoker, C., Zavaleta, J., Quinn, R., Blake, D., Martins, Z., Sephton, M., Becker, L., Orzechowska, G. et al. (2010). EuroGeoMars field campaign: sample analysis of organic matter and minerals. In 41th Annual Lunar and Planetary Science Conference, Abstract No. 1723.
Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. & Akkermans, A.D.L. (1997). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 29832989.
Fierer, N. & Jackson, R.B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103(3), 626631.
Foing, B.H., Batenburg, P., Drijkoningen, G., Slob, E., Poulakis, P., Visentin, G., Page, J., Noroozi, A., Gill, E., Guglielmi, M. et al. (2009). Exogeolab lander/rover instruments and EuroGeoMars MDRS campaign. In 40th Annual Lunar and Planetary Science Conference, Abstract No. 2567.
Friedmann, E.I. & Ocampo-Friedmann, R. (1985). Blue-green algae in arid cryptoendolithic habitats. Algol. Stud./Arch. Hydrobiol. Suppl. 38–39, 349350.
Garcia-Pichel, F. & Belnap, J. (1996). Microenvironments and microscale productivity of cyanobacterial desert crusts. J. Phycol. 32(5), 774782.
Godfrey, A.E. (1997). Wind erosion of Mancos Shale badland ridges by sudden drops in pressure. Earth Surf. Process. Landforms 22(4), 345352.
Godfrey, A.E., Everitt, B.L. & Duque, J.F.M. (2008). Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA. Geomorphology 102(2), 242251.
Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-González, R. (2008). Atacama Desert soil microbiology. In Microbiology of Extreme Soils, ed. Dion, P., Nautiyal, C.S. & Varma, A., volume 13, pp. 117132. Springer, Berlin, Heidelberg.
Gommeaux, M., Barakat, M., Montagnac, G., Christen, R., Guyot, F. & Heulin, T. (2010). Mineral and bacterial diversities of desert sand grains from south-east Morocco. Geomicrobiol. J. 27(1), 7692.
Grady, M.M. (2007). Astrobiology of the terrestrial planets, with emphasis on Mars. In Complete Course in Astrobiology, ed. Horneck, G. & Rettberg, P., pp. 203222. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim.
Greeley, R., Thompson, S.D., Whelley, P.L., Squyres, S., Neukum, G., Arvidson, R., Malin, M., Kuzmin, R., Christensen, P., Rafkin, S. et al. (2004). Coordinated observations of aeolian features from the Mars Exploration Rovers (MER) and the Mars Express High Resolution Stereo Camera and other orbiters. In 35th Annual Lunar and Planetary Science Conference, Abstract No. 2162.
Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J. et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325(5936), 6467.
Hughes, J. & Smith, H.G. (1989). Temperature relations of Heteromita globosa Stein in Signy Island fellfields. In University Research in Antarctica, Proceedings of British Antarctic Survey Antarctic Special Topic Award Scheme Symposium, 9–10 November 1988, ed. Heywood, R.B., pp. 117122. British Antarctic Survey, Natural Environment Research Council, Cambridge.
Itoh, T., Yamanoi, K., Kudo, T., Ohkuma, M. & Takashina, T. (2010). Aciditerrimonas ferrireducens gen. nov., sp. nov., a novel iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field in Japan. Int. J. Syst. Evol. Microbiol., doi:10.1099/ijs.0.023044-0.
Jukes, T.H. & Cantor, C.R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism, ed. Munro, H.N., volume 3, pp. 21132. Academic Press, New York, NY.
Keller, W.D. (1958). Clay minerals in the Morrison formation on the Colorado Plateau. Clays Clay Miner. 7, 293294.
Kotler, M., Quinn, R., Martins, Z., Foing, B. & Ehrenfreund, P. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah desert. Int. J. Astrobiol., in press.
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 39, 704708.
Lewis, L.A. & Lewis, P.O. (2005). Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 54(6), 936947.
Malin, M.C. & Edgett, K.S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science 288(5475), 23302335.
Martins, Z., Sephton, M.A., Foing, B.H. & Ehrenfreund, P. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int. J. Astrobiol., in press.
Muyzer, G., Dewaal, E.C. & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3), 695700.
Nagy, M.L., Pérez, A. & Garcia-Pichel, F. (2005). The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol. Ecol. 54(2), 233245.
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars. J. Geophys. Res.–Planets 115(E12010), 11. doi:10.1029/2010JE003599.
Ormö, J., Komatsu, G., Chan, M.A., Beitler, B. & Parry, W.T. (2004). Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA. Icarus 171(2), 295316.
Orzechowska, G.E., Kidd, R.D., Foing, B.H., Kanik, I., Stoker, C. & Ehrenfreund, P. (2011). Analysis of mars analog soil samples using solid phase microextraction, organic solvent extraction and gas-chromatography/mass spectrometry. Int. J. Astrobiol., in press.
Øvreås, L., Forney, L., Daae, F.L. & Torsvik, V. (1997). Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63(9), 33673373.
Pointing, S.B., Chan, Y., Lacap, D.C., Lau, M.C.Y., Jurgens, J.A. & Farrell, R.L. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA 106(47), 1996419969.
Postmus, J., Canelas, A.B., Bouwman, J., Bakker, B.M., van Gulik, W., de Mattos, M.J.T., Brul, S. & Smits, G.J. (2008). Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation. J. Biol. Chem. 283(35), 2352423532.
Poulet, F., Bibring, J.P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438(7068), 623627.
Prestel, E., Salamitou, S. & Dubow, M.S. (2008). An examination of the bacteriophages and bacteria of the Namib Desert. J. Microbiol. 46(4), 364372.
Saeki, K. & Sakai, M. (2009). The influence of soil organic matter on DNA adsorptions on andosols. Microbes Environ. 24(2), 175179.
Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406425.
Stan-Lotter, H. (2007). Extremophiles, the physicochemical limits of life (growth and survival). In Complete Course in Astrobiology, ed. Horneck, G. & Rettberg, P., pp. 121150. Wiley VCH, Verlag GmbH & Co. KGaA, Weinheim.
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8), 15961599.
Thiel, C.S., Ehrenfreund, P., Foing, B., Pletser, V. & Ullrich, O. (2011). PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int. J. Astrobiol., in press.
Torsvik, V. & Øvreås, L. (2008). Microbial diversity, life strategies, and adaptation to life in extreme soils. In Microbiology of Extreme Soils, ed. Dion, P., Nautiyal, C.S. & Varma, A., volume 13, pp. 1543. Springer, Berlin, Heidelberg.
Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A. & Reysenbach, A.L. (1999). Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65(10), 43754384.
Vítek, P., Edwards, H.G.M., Jehlička, J., Ascaso, C., De Los Ríos, A., Valea, S., Jorge-Villar, S.E., Davila, A.F. & Wierzchos, J. (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368(1922), 32053221.
Wessels, D.C.J. & Büdel, B. (1995). Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highland. Botan. Acta 108(3), 220226.
Wood, S.A., Rueckert, A., Cowan, D.A. & Cary, S.C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2(3), 308320.
Worms, J.C., Lammer, H., Barucci, A., Beebe, R., Bibring, J.P., Blamont, J., Blanc, M., Bonnet, R., Brucato, J.R., Chassefiere, E. et al. (2009). ESSC-ESF position paper science-driven scenario for space Exploration: report from the Europe Space Sciences Committee (ESSC). Astrobiology 9(1), 2341.
Yergeau, E., Newsham, K.K., Pearce, D.A. & Kowalchuk, G.A. (2007). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9, 26702682.


A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

  • Susana O.L. Direito (a1), Pascale Ehrenfreund (a2) (a3), Andries Marees (a1), Martijn Staats (a1), Bernard Foing (a4) (a5) and Wilfred F.M. Röling (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed