Skip to main content Accessibility help

Testing the preservation of biomarkers during experimental maturation of an immature kerogen

  • H. Mißbach (a1) (a2), J.-P. Duda (a1) (a3), N.K. Lünsdorf (a4), B.C. Schmidt (a5) and V. Thiel (a1)...


Lipid biomarkers have been extensively applied for tracing organisms and evolutionary processes through Earth's history. They have become especially important for the reconstruction of early life on Earth and, potentially, for the detection of life in the extraterrestrial realm. However, it is not always clear how exactly biomarkers reflect a paleoecosystem as their preservation may be influenced by increasing temperatures (T) and pressures (P) during burial. While a number of biomarker indices reflecting thermal maturity have been established, it is often less well constrained to which extent biomarker ratios used for paleoreconstruction are compromised by T and P processes. In this study we conducted hydrous pyrolysis of Green River Shale (GRS) kerogen in gold capsules for 2–2400 h at 300°C to assess the maturation behaviour of several compounds used as life tracers and for the reconstruction of paleoenvironments (n-alkanes, pristane, phytane, gammacerane, steranes, hopanes and cheilanthanes). Lignite samples were maturated in parallel with the GRS kerogen to obtain exact vitrinite reflectance data at every sampling point. Our experiment confirms the applicability of biomarker-based indices and ratios as maturity indicators (e.g. total cheilanthanes/hopanes ratio; sterane and hopane isomerization indices). However, several biomarker ratios that are commonly used for paleoreconstructions (e.g. pristane/phytane, pristane/n-C17, phytane/n-C18 and total steranes/hopanes) were considerably affected by differences in the thermal degradation behaviour of the respective compounds. Short-term experiments (48 h) performed at 400°C also revealed that biomarkers >C15 (especially steranes and hopanes) and ‘biological’ chain length preferences for n-alkanes are vanished at a vitrinite reflectance between 1.38 and 1.83% R O. Our data highlight that ‘thermal taphonomy’ effects have to be carefully considered in the interpretation of biomarkers in ancient rocks and, potentially, extraterrestrial materials.


Corresponding author


Hide All
Ahmed, M. & George, S.C. (2004). Changes in the molecular composition of crude oils during their preparation for GC and GC–MS analyses. Org. Geochem. 35, 137155.
Alexander, R., Kagi, R.I. & Woodhouse, G.W. (1981). Geochemical correlation of Windalia oil and extracts of Winning Group (Cretaceous) potential source rocks, Barrow Subbasin, Western Australia. AAPG Bull. 65, 235250.
Aquino Neto, F.R., Trendel, J.M., Restle, A., Connan, J. & Albrecht, P.A. (1981). Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. Adv. Org. Geochem. 10, 659667.
Blumenberg, M., Thiel, V., Riegel, W., Kah, L.C. & Reitner, J. (2012). Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res. 196–197, 113127.
Blumenberg, M., Thiel, V. & Reitner, J. (2015). Organic matter preservation in the carbonate matrix of a recent microbial mat – Is there a ‘mat seal effect’? Org. Geochem. 87, 2534.
Blumer, M., Guillard, R. & Chase, T. (1971). Hydrocarbons of marine phytoplankton. Marine Biol. 8, 183189.
Bray, E.E. & Evans, E.D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 215.
Brocks, J.J., Logan, G.A., Buick, R. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.
Brocks, J.J. & Summons, R.E. (2003). Biomarkers for early life. In Biogeochemistry, Vol. 8, ed. Schlesinger, W.H., pp. 63115. Elsevier, Oxford.
Brocks, J.J., Buick, R., Logan, G.A. & Summons, R.E. (2003a). Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta 67, 42894319.
Brocks, J.J., Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E. & Buick, R. (2003b). Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim. Cosmochim. Acta 67, 15211530.
Brocks, J.J. & Pearson, A. (2005). Building the biomarker tree of life. Rev. Mineral. Geochem. 59, 233258.
Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Kenig, F., Moczydłowska, M., Porter, S. & Hope, J. (2016). Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129149.
Burnham, A.K., Clarkson, J.E., Singleton, M.F., Wong, C.M. & Crawford, R.W. (1982). Biological markers from Green River kerogen decomposition. Geochim. Cosmochim. Acta 46, 12431251.
Burnham, A.K. & Singleton, M.F. (1983). High-pressure pyrolysis of Green River oil shale. In ACS Symposium Series (United States), Lawrence Livermore National Lab., CA.
Collister, J.W., Summons, R.E., Lichtfouse, E. & Hayes, J.M. (1992). An isotopic biogeochemical study of the Green River oil shale. Org. Geochem. 19, 265276.
De Grande, S.M.B., Aquino Neto, F.R. & Mello, M.R. (1993). Extended tricyclic terpanes in sediments and petroleums. Org. Geochem. 20, 10391047.
De Leeuw, J.W., Versteegh, G.J.M. & van Bergen, P.F. (2006). Biomacromolecules of algae and plants and their fossil analogues. In Plants and Climate Change, Vol. 41, ed. Rozema, J., Aerts, R. and Cornelissen, H., pp. 209233. Springer, The Netherlands.
Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216222.
Duda, J.-P., Blumenberg, M., Thiel, V., Simon, K., Zhu, M. & Reitner, J. (2014). Geobiology of a palaeoecosystem with Ediacara-type fossils: the Shibantan Member (Dengying Formation, South China). Precambrian Res. 255 (Part 1), 4862.
Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In Kerogen, ed. Durand, B., pp. 1334. Éditions Technip, Paris.
Durand, B. & Nicaise, G. (1980). Procedures for kerogen isolation. In Kerogen, ed. Durand, B., pp. 3553. Éditions Technip, Paris.
Eglinton, G. & Hamilton, R.J. (1967). Leaf epicuticular waxes. Science 156, 13221335.
Eglinton, T.I. & Douglas, A.G. (1988). Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy Fuels 2, 8188.
Eickhoff, M., Birgel, D., Talbot, H.M., Peckmann, J. & Kappler, A. (2013). Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1. Geobiology 11, 268278.
Evans, R.J. & Felbeck, G.T. Jr. (1983). High temperature simulation of petroleum formation—I. The pyrolysis of Green River Shale. Org. Geochem. 4, 135144.
Flannery, E.N. & George, S.C. (2014). Assessing the syngeneity and indigeneity of hydrocarbons in the ~1.4 Ga Velkerri Formation, McArthur Basin, using slice experiments. Org. Geochem. 77, 115125.
French, K.L., Hallmann, C., Hope, J.M., Schoon, P.L., Zumberge, J.A., Hoshino, Y., Peters, C.A., George, S.C., Love, G.D. & Brocks, J.J. (2015). Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl. Acad. Sci. 112, 59155920.
Goossens, H., de Leeuw, J.W., Schenck, P.A. & Brassell, S.C. (1984). Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312, 440442.
Goossens, H., de Lange, F., de Leeuw, J.W. & Schenck, P.A. (1988a). The Pristane Formation Index, a molecular maturity parameter. Confirmation in samples from the Paris Basin. Geochim. Cosmochim. Acta 52, 24392444.
Goossens, H., Due, A., de Leeuw, J.W., van de Graaf, B. & Schenck, P.A. (1988b). The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochim. Cosmochim. Acta 52, 11891193.
Gruber, W. & Sachsenhofer, R.F. (2001). Coal deposition in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol. 48, 89114.
Hallmann, C., Kelly, A.E., Gupta, S.N. & Summons, R.E. (2011). Reconstructing deep-time biology with molecular fossils. In Quantifying the Evolution of Early Life, ed. Laflamme, M., Schiffbauer, J.D. & Dornbos, S.Q., pp. 355401. Springer, Netherlands, Dordrecht.
Harvey, H.R. & McManus, G.B. (1991). Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochim. Cosmochim. Acta 55, 33873390.
Hedges, J.I. & Keil, R.G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81115.
Hieshima, G.B. & Pratt, L.M. (1991). Sulfur/carbon ratios and extractable organic matter of the Middle Proterozoic Nonesuch Formation, North American Midcontinent rift. Precambrian Res. 54, 6579.
Hoffmann, C.F., Foster, C.B., Powell, T.G. & Summons, R.E. (1987). Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim. Cosmochim. Acta 51, 26812697.
Horsfield, B. et al. (1994). Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A. Org. Geochem. 22, 415440.
Huizinga, B.J., Aizenshtat, Z.A. & Peters, K.E. (1988). Programmed pyrolysis-gas chromatography of artificially matured Green River kerogen. Energy Fuels 2, 7481.
Jacobson, S.R., Hatch, J.R., Teerman, S.C. & Askin, R.A. (1988). Middle ordovician organic matter assemblages and their effect on ordovician-derived oils: GEOLOGIC NOTE. AAPG Bull. 72, 10901100.
Kennedy, M.J., Pevear, D.R. & Hill, R.J. (2002). Mineral surface control of organic carbon in black shale. Science 295, 657660.
Killops, S.D. & Killops, V.J. (2005). Introduction to Organic Geochemistry. Blackwell Publishing Ltd, Oxford.
Kleemann, G., Poralla, K., Englert, G., Kjøsen, H., Liaaen-Jensen, S., Neunlist, S. & Rohmer, M. (1990). Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote. Microbiology 136, 25512553.
Koopmans, M.P., de Leeuw, J.W. & Sinninghe Damsté, J.S. (1997). Novel cyclised and aromatised diagenetic products of β-carotene in the Green River Shale. Org. Geochem. 26, 451466.
Larter, S.R., Solli, H., Douglas, A.G., de Lange, F. & de Leeuw, J.W. (1979). Occurrence and significance of prist-1-ene in kerogen pyrolysates. Nature 279, 405408.
Le Bayon, R., Buhre, S., Schmidt, B.C. & Ferreiro Mählmann, R. (2012). Experimental organic matter maturation at 2 kbar: heat-up effect to low temperatures on vitrinite reflectance. Int. J. Coal Geol. 92, 4553.
Love, G.D., Snape, C.E., Carr, A.D. & Houghton, R.C. (1995). Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org. Geochem. 23, 981986.
Love, G.D., Stalvies, C., Grosjean, E., Meredith, W. & Snape, C. (2008). Analysis of molecular biomarkers covalently bound within Neoproterozoic sedimentary kerogen. In From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. Paleontological Society Papers, Vol. 14, ed. Kelley, P.H. & Bambach, R.K., pp. 6783. The Paleontological Society, Columbus, Ohio.
Love, G.D. et al. (2009). Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718721.
Luo, G., Hallmann, C., Xie, S., Ruan, X. & Summons, R.E. (2015). Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim. Cosmochim. Acta 151, 150167.
Mango, F.D. (1996). Transition metal catalysis in the generation of natural gas. Org. Geochem. 24, 977984.
Mango, F.D. & Hightower, J. (1997). The catalytic decomposition of petroleum into natural gas. Geochim. Cosmochim. Acta 61, 53475350.
Meredith, W., Kelland, S.J. & Jones, D.M. (2000). Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org. Geochem. 31, 10591073.
Middelburg, J.J. & Meysman, F.J.R. (2007). Burial at Sea. Science 316, 12941295.
Moldowan, J.M., Seifert, W.K. & Gallegos, E.J. (1983). Identification of an extended series of tricyclic terpanes in petroleum. Geochim. Cosmochim. Acta 47, 15311534.
Monthioux, M. & Landais, P. (1989). Natural and artificial maturation of coal: non-hopanoid biomarkers. Chem. Geol. 77, 7185.
Naeher, S. & Grice, K. (2015). Novel 1H-Pyrrole-2,5-dione (maleimide) proxies for the assessment of photic zone euxinia. Chem. Geol. 404, 100109.
Norgate, C.M., Boreham, C.J. & Wilkins, A.J. (1999). Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Org. Geochem. 30, 9851010.
Olcott Marshall, A. & Cestari, N.A. (2015). Biomarker analysis of samples visually identified as microbial in the Eocene Green River Formation: an analogue for Mars. Astrobiology 15, 770775.
Pawlowska, M.M., Butterfield, N.J. & Brocks, J.J. (2013). Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103106.
Peters, K.E., Moldowan, J.M. & Sundararaman, P. (1990). Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey Phosphatic and Siliceous members. Org. Geochem. 15, 249265.
Peters, K.E., Walters, C.C. & Moldowan, J.M. (2005a). The Biomarker Guide - Part I - Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, New York.
Peters, K.E., Walters, C.C. & Moldowan, J.M. (2005b). The Biomarker Guide - Part II - Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, New York.
Price, L.C. (1983). Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. J. Petrol. Geol. 6, 537.
Price, L.C. (1993). Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 32613280.
Requejo, A.G. (1994). Maturation of petroleum source rocks – II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org. Geochem. 21, 91105.
Rohmer, M., Bouvier-Nave, P. & Ourisson, G. (1984). Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130, 11371150.
Ruble, T.E., Lewan, M. & Philp, R. (2001). New insights on the Green River petroleum system in the Uinta basin from hydrous pyrolysis experiments. AAPG Bull. 85, 13331371.
Rullkötter, J., Meyers, P.A., Schaefer, R.G. & Dunham, K.W. (1986). Oil generation in the Michigan basin: a biological marker and carbon isotope approach. Org. Geochem. 10, 359375.
Schmidt, B.C., Blum-Oeste, N. & Flagmeier, J. (2013). Water diffusion in phonolite melts. Geochim. Cosmochim. Acta 107, 220230.
Schoell, M., Hwang, R.J., Carlson, R.M.K. & Welton, J.E. (1994). Carbon isotopic composition of individual biomarkers in gilsonites (Utah). Org. Geochem. 21, 673683.
Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M. & de Leeuw, J.W. (1995). Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59, 18951900.
Summons, R.E., Brassell, S.C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N. & Ward, D.M. (1988). Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 26252637.
Summons, R.E. (2014). The exceptional preservation of interesting and informative biomolecules. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers, Vol. 20, ed. Laflamme, M., Schiffbauer, J.D. & Darroch, S.A.F., pp. 217236. The Paleontological Society, Columbus, Ohio.
Ten Haven, H.L., de Leeuw, J.W., Rullkötter, J. & Sinninghe Damsté, J.S. (1987). Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature 330, 641643.
Ten Haven, H.L., Rohmer, M., Rullkötter, J. & Bisseret, P. (1989). Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Acta 53, 30733079.
Tissot, B.P., Deroo, G. & Hood, A. (1978). Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation. Geochim. Cosmochim. Acta 42, 14691485.
Tissot, B.P. & Welte, D.H. (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin Heidelberg GmbH.
Treibs, A. (1936). Chlorophyll-und Häminderivate in organischen Mineralstoffen. Angewandte Chemie 49, 682686.
Tulipani, S. et al. (2015). Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: a biomarker and stable isotope approach. Gondwana Res. 28, 15001515.
Vandenbroucke, M. & Largeau, C. (2007). Kerogen origin, evolution and structure. Org. Geochem. 38, 719833.
Yamada, K., Ueno, Y., Yamada, K., Komiya, T., Han, J., Shu, D., Yoshida, N. & Maruyama, S. (2014). Molecular fossils extracted from the Early Cambrian section in the Three Gorges area, South China. Gondwana Res. 25, 11081119.


Related content

Powered by UNSILO

Testing the preservation of biomarkers during experimental maturation of an immature kerogen

  • H. Mißbach (a1) (a2), J.-P. Duda (a1) (a3), N.K. Lünsdorf (a4), B.C. Schmidt (a5) and V. Thiel (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.