Skip to main content Accessibility help

PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah

  • Cora S. Thiel (a1), Pascale Ehrenfreund (a2), Bernard Foing (a3), Vladimir Pletser (a4) and Oliver Ullrich (a5) (a6) (a7)...


The search for evidence of past or present life on Mars will require the detection of markers that indicate the presence of life. Because deoxyribonucleic acid (DNA) is found in all known living organisms, it is considered to be a ‘biosignature’ of life. The main function of DNA is the long-term storage of genetic information, which is passed on from generation to generation as hereditary material. The Polymerase Chain Reaction (PCR) is a revolutionary technique which allows a single fragment or a small number of fragments of a DNA molecule to be amplified millions of times, making it possible to detect minimal traces of DNA. The compactness of the contemporary PCR instruments makes routine sample analysis possible with a minimum amount of laboratory space. Furthermore the technique is effective, robust and straightforward. Our goal was to establish a routine for the detection of DNA from micro-organisms using the PCR technique during the EuroGeoMars simulation campaign. This took place at the Mars Society's Mars Desert Research Station (MDRS) in Utah in February 2009 (organized with the support of the International Lunar Exploration Working Group (ILEWG), NASA Ames and the European Space Research and Technology Centre (ESTEC)). During the MDRS simulation, we showed that it is possible to establish a minimal molecular biology lab in the habitat for the immediate on-site analysis of samples by PCR after sample collection. Soil and water samples were taken at different locations and soil depths. The sample analysis was started immediately after the crew returned to the habitat laboratory. DNA was isolated from micro-organisms and used as a template for PCR analysis of the highly conserved ribosomal DNA to identify representatives of the different groups of micro-organisms (bacteria, archaea and eukarya). The PCR products were visualized by agarose gel electrophoresis and documented by transillumination and digital imaging. The microbial diversity in the collected samples was analysed with respect to sampling depth and the presence or absence of vegetation. For the first time, we have demonstrated that it is possible to perform direct on-site DNA analysis by PCR at MDRS, a simulated planetary habitat in an extreme environment that serves as a model for preparation and optimization of techniques to be used for future Mars exploration.


Corresponding author


Hide All
Ahram Biosystems (2010). Available online at (accessed 20 October 2010).
Becquerel, P. (1950). La suspension de la vie au dessous de 1/20K absolu par démagnétisation adiabatique de l'alun de fer dans le vide le plus elevé. C. R. Hebd. Séances Acad. Sci. Paris 231, 261–263.
Cary, S.C., McDonald, I.R., Barrett, J.E. & Cowan, D.A. (2010). On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8, 129138.
Cleaves, H.J. II, Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A. & Hazen, R.M. (2010). Adsorption of nucleic acid components on rutile (TiO(2)) surfaces. Astrobiology 10, 311323.
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112, G04S17.
Córdoba-Jabonero, C., Zorzano, M.P., Selsis, F., Patel, M.R. & Cockell, C.S. (2005). Radiative zones in Martian polar environments. Icarus 175, 360371.
DeLong, E.F. (1992). Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U.S.A. 89, 56855689.
Direito, S.O.L., Ehrenfreund, P., Marees, A., Staats, M., Foing, B. & Röling, W.F.M. (2011). A wide variety of extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int. J. Astrobiol (Special Issue). DOI: 10.1017/S1473550411000012
Drees, K.P., Neilson, J.W., Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M. & Maier, R.M. (2006). Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl. Environ. Microbiol. 72, 79027908.
Eglinton, G. & Logan, G.A. (1991). Molecular preservation. Philos. Trans. R. Soc. Lond. B 333, 315327; discussion 27–28.
Ehrenfreund, P., Foing, B.H., Stoker, C., Zavaleta, J., Quinn, R., Blake, D., Martins, Z., Sephton, M., Becker, L., Orzechowska, al. (2010). EuroGeoMars Field Campaign: Sample Analysis of Organic Matter and Minerals. LPI Contribution No. 41, p. 1723.
Ehrenfreund, P., Röling, W., Thiel, C.S., Quinn, R., Septhon, M., Stoker, C., Direito, S., Kotler, M., Martins, Z., Orzechowska, G.E., Kidd, R. & Foing, B.F. (2011). Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int. Journal of Astrobiology, Special Issue.
Fajardo-Cavazos, P., Langenhorst, F., Melosh, H.J. & Nicholson, W.L. (2009). Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. Astrobiology 9, 647657.
Fajardo-Cavazos, P., Link, L., Melosh, H.J. & Nicholson, W.L. (2005). Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for Lithopanspermia. Astrobiology 5, 726736.
Fajardo-Cavazos, P., Schuerger, A.C. & Nicholson, W.L. (2010). Exposure of DNA and Bacillus subtilis spores to simulated Martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule. Astrobiology 10, 403411.
Foing, B. (2009). Summary Report. EuroGeoMars Campaign: Last Rotation Crew 77. End of Rotation Report (online). Available at (accessed 1 November 2010).
Foing, B.H., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J., Direito, S., Kotler, M., Martins, Z., Orzechowska, G., Gross, C., Wendt, L., Clarke, J., Borst, A.M., Peters, S.T.M., Wilhelm, M.-B., Davies, G.R. & ILEWG EuroGeoMars 2009 team (2011). Field Astrobiology Research in Moon-Mars Analogue Site: Instruments & Methods. Int. Journal of Astrobiology, Special Issue.
Foing, B.H., Mahapatra, P., Boche-Sauvan, L., Som, S., Page, J., Stoker, C., Zhavaleta, J., Sarrazin, P., Blake, D., Poulakis, al. (2010). ExoGeoLab Test Bench for Landers, Rovers and Astrobiology. LPI Contribution No. 1538, p. 5477.
Haile, J., Holdaway, R., Oliver, K., Bunce, M., Gilbert, M.T., Nielsen, R., Munch, K., Ho, S.Y., Shapiro, B. & Willerslev, E. (2007). Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24, 982989.
Hofreiter, M., Mead, J.I., Martin, P. & Poinar, H.N. (2003). Molecular caving. Curr. Biol. 13, R693R695.
Hofreiter, M., Serre, D., Poinar, H.N., Kuch, M. & Päabo, S. (2001). Ancient DNA. Nat. Rev. Genet. 2, 353360.
Horikawa, D.D., Sakashita, T., Katagiri, C., Watanabe, M., Kikawada, T., Nakahara, Y., Hamada, N., Wada, S., Funayama, T., Higashi, S. et al. (2006). Radiation tolerance in the tardigrade Milnersium tardigradum. Int. J. Radiat. Biol. 82, 843848.
Horneck, G. (2003). Could life travel across interplanetary space? Panspermia revisited. In Evolution on Planet Earth: The Impact of the Physical Environment, ed. Rothschild, L.J. & Lister, A.M., pp. 109127. London: Academic Press.
Horneck, G. (2008b). The microbial case for Mars and its implication for human expeditions to Mars. Acta Astronaut. 63, 10151024.
Horneck, G., Stöffler, D., Ott, S., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.P., Fritz, J., Schade, S. et al. (2008a). Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8, 1744.
Inagaki, F., Okada, H., Tsapin, A.I. & Nealson, K.H. (2005). Microbial survival: the paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5, 141153.
Isenbarger, T.A., Carr, C.E., Johnson, S.S., Finney, M., Church, G.M., Gilbert, W., Zuber, M.T. & Ruvkun, G. (2008). The most conserved genome segments for life detection on Earth and other planets. Orig. Life Evol. Biosph. 38, 517533.
Jönsson, K.I., Rabbow, E., Schill, R.O., Harms-Ringdahl, M. & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Curr. Biol. 18, R729R731.
Lane, D.J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, ed. Stackebrandt, E. & Goodfellow, M., pp. 115175. Wiley, New York.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709715.
Lyon, D.Y., Monier, J.M., Dupraz, S., Freissinet, C., Simonet, P. & Vogel, T.M. (2010). Integrity and biological activity of DNA after UV exposure. Astrobiology 10, 285292.
Moeller, R., Horneck, G., Rabbow, E., Reitz, G., Meyer, C., Hornemann, U. & Stöffler, D. (2008). Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts. Appl. Environ. Microbiol. 74, 66826689.
Mormile, M.R., Hong, B.Y. & Benison, K.C. (2009). Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. Astrobiology 9, 919930.
Mullis, K.B. & Faloona, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335350.
Olsson-Francis, K. & Cockell, C.S. (2010). Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Methods 80, 113.
Päabo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L. & Hofreiter, M. (2004). Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645679.
Parnell, J., Cullen, D.C., Sims, M.R., Bowden, S., Cockell, C.S., Court, R., Ehrenfreund, P., Gaubert, F., Grant, W., Parro, V. et al. (2007). Searching for life on Mars: selection of molecular targets for ESA's Aurora ExoMars mission. Astrobiology 7, 578604.
Pavlov, A.K., Shelegedina, V.N., Vdovina, M.A. & Pavlov, A.A. (2010). Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modeling. Int. J. Astrobiol. 9, 5158.
Poole, A.M. & Willerslev, E. (2007). Can identification of a fourth domain of life be made from sequence data alone, and could it be done on Mars? Astrobiology 7, 801814.
Promega (2010). Available online at: (accessed 20 October 2010).
Qiagen (2010). Available online at: (accessed 20 October 2010).
Rebecchi, L., Altiero, T., Guidetti, R., Cesari, M., Bertolani, R., Negroni, M. & Rizzo, A.M. (2009). Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9, 581591.
Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. & Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 13501354.
Secosky, J. (2008). Summary of biology studies done at MDRS (online) Available at: (accessed 20 October 2010).
Sermon, K. & De Rycke, M. (2007). Single cell diagnostics. Methods Mol. Med. 132, 3142.
Smith, S.E. & Read, D.J. (1997). Mycorhizal Symbiosis. Academic Press, San Diego, CA.
Thiel, C.S., Pletser, V. & Foing, B. (2011). Human crew related aspects for astrobiology research. Int. J. Astrobiol. Special Issue.
Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H., Podar, M., Short, J.M., Mathur, E.J., Detter, J.C. et al. (2005). Comparative metagenomics of microbial communities. Science 308, 554557.
Van de Peer, Y., Chapelle, S. & de Wachter, R. (1996). A quantitative map of nucleotide substitution rates in bacterial ribosomal subunit RNA. Nucleic Acids Res., 24, 33813391.
Van Rhijn, P. & Vanderleyden, J. (1995). The rhizobia-plant symbiosis. Microbiol. Rev. 59, 124142.
White, T.J., Bruns, T.D., Lee, S.B. & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR – Protocols and Applications – A Laboratory Manual, ed. Innis, N., Gelfand, D., Sninsky, J. & White, T., pp. 315322. Academic Press, New York.
Willerslev, E. & Cooper, A. (2005). Ancient DNA. Proc. R. Soc. B 272, 316.
Willerslev, E., Hansen, A.J., Binladen, J., Brand, T.B., Gilbert, M.T., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D.A. & Cooper, A. (2003). Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791795.
Willerslev, E., Hansen, A.J., Ronn, R., Brand, T.B., Barnes, I., Wiuf, C., Gilichinsky, D.A. & Cooper, A. (2004). Long-term persistence of bacterial DNA. Curr. Biol. 14, R9R10.
Wilson, P.K. (2007). Development of life marker chip technology for in-situ life detection on Mars. PhD Thesis, Cranfield University,
Woese, C. (1987). Bacterial evolution. Microbiol. Rev. 51, 221271.


PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah

  • Cora S. Thiel (a1), Pascale Ehrenfreund (a2), Bernard Foing (a3), Vladimir Pletser (a4) and Oliver Ullrich (a5) (a6) (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed