Skip to main content Accessibility help
×
Home

Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties

  • J. Jänchen (a1), J. Meeßen (a2), T.H. Herzog (a1), M. Feist (a3), R. de la Torre (a4) and J.-P.P. deVera (a5)...

Abstract

We quantitatively studied the hydration and dehydration behaviour of the three astrobiological model lichens Xanthoria elegans, Buellia frigida and Circinaria gyrosa by thermoanalysis and gravimetric isotherm measurements under close-to-Martian environmental conditions in terms of low temperature and low pressure. Additionally, the impact of UVC exposure on the isolated symbionts of B. frigida and X. elegans was studied by thermoanalysis and mass spectrometry as well as by gravimetric isotherm measurements. The thermal analysis revealed whewellite as a component of C. gyrosa which was not found in B. frigida and X. elegans. Neither the water retention nor the thermal behaviour of symbionts changed when irradiated with UVC under dry conditions. On the other hand, UVC irradiation of the wet mycobiont of B. frigida had a distinct impact on the hydration/dehydration ability which was not observed for the mycobiont of X. elegans. Possibly the melanin of B. frigida's mycobiont, that is not present in X. elegans, or a specifically damaged acetamido group of the chitin of B. frigida may be the sources of additional UVC-induced sorption sites for water associated with the UVC exposure.

Copyright

Corresponding author

References

Hide All
Bibring, J-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307(5715), 15761581.
Böttger, U., Meeßen, J., de la Torre, R., Frias, J.M., Rull, F., Sánchez, F.J., Hüber, H.W. & de Vera, J.-P. (2013). Raman spectroscopic analysis of Circinariagyrosa as a candidate for BIOMEX. Int. J. Astrobiol. 13(1), 1927, doi: 10.17/S1473550413000293
Brandt, A., de Vera, J.-P., Onofri, S. & Ott, S. (2014). Viability of the lichen Xanthoriaelegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int. J. Astrobiol., publ. online 2014, doi: 10.1017/s1473550414000214
Briggs, G., Klaasen, K., Thorpe, T., Wellman, J. & Baum, W. (1977). Martian dynamical phenomena during June–November 1976: viking Orbiter imaging results. J Geophys. Res. 82(A28), 41214149.
Christensen, P.R. (2006). Water at the poles and in permafrost regions of mars. Elements 2(3), 151155.
Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. & Casdevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one. 2(5), e457.
Daum, G. (2005). Aerobe Deprotonierung von Crustacean-Abfällen zur Gewinnung von Chitin mittels proteolytischer Mikroorganismen, Thesis, University of Hamburg, 2005.
Davies, D.W. (1979). The relative humidity of Mars’ atmosphere. J. Geophys. Res. 84(B14), 83358340.
de la Torre, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. & Horneck, G. (2007). BIOPAN experiment LICHENS on the Foton M2 mission: pre-flight verification tests of the Rhizocarpongeographicum-granite ecosystem. Adv. Space Res. 40(11), 16651671.
de la Torre, R. et al. (2010). Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments. Icarus 208(2), 735748.
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2003). The potential of the lichen symbiosis to cope with the extreme conditions of outer space I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1(1), 285293.
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2004a). The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33, 12361243.
de Vera, J.P., Horneck, G., Rettberg, P. & Ott, S. (2004b). In the context of panspermia: May lichens serve as shuttles for their bionts in space? In Proceedings of the third European Workshop on Astrobiology, pp. 197–198. ESA SP-545, ESA Publications Division, ESTEC, Noordwijk.
de Vera, J.P., Rettberg, P. & Ott, S. (2008). Life at the limits: capacities of isolated and cultured lichensymbionts to resist extreme environmental stresses. Orig. Life Evol. Biosph. 38, 457468.
de Vera, J.P., Möhlmann, D., Butina, F., Lorek, A., Wernecke, R. & Ott, S. (2010). Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10(2), 215227.
de Vera, J.P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D. & Spohn, T. (2013). Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci. 98, 182190. doi: 10.1016/j.pss.2013.07.014
Emmerich, W.D. & Post, E. (1997). Simultaneous thermal analysis – Mass spectrometer skimmer coupling system. J. Therm. Anal. 49, 10071012.
Farmer, C.B., Davies, D.W., Holland, A.L., LaPorte, D.D. & Doms, P.E. (1977). Mars: water vapor observations from the Viking orbiters. J. Geophys. Res. 82(B28), 42254248.
Feldman, W.C., Prettyman, T.H., Maurice, S., Plaut, J.J., Bish, D.L., Vaniman, D.T. & Tokar, R.L. (2004). Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109(E9), 113, doi: 10.1029/2003JE002160
Grotzinger, J.P. et al. (2014). A habitable fluvio-lacustrineenvironment at yellowknife bay, gale crater, mars. Science 343(6169), 1242777. doi: 10.1126/science.1242777
Hale, M.E. (1976). The Biology of Lichens, pp. 3739. Edward Arnold Publishers, London.
Hanss, J., Kalytta, A. & Reller, A. (2003). Potentials and limitations of the skimmer MS system, hyphenated techniques in thermal analysis. In Proceedings of the 5th SelberKopplungstage, ed. Kapsch, E. & Hollering, M., pp. 151–163. Bad Orb, Germany (May 25–28, 2003).
Harańczyk, H., Pytel, M., Pater, Ł. & Olech, A. (2008). Deep dehydration resistance of antarctic lichens (genera Umbilicaria and Ramalina) by proton NMR and sorbtion isotherm. Antarctic Sci. Cambridge University Press, 20(6), 527535.
Hassler, D.M. et al. (2014). Mars’ surface radiation environment measured with the Mars Science Laboratory's Curiosity Rover. Science 343(6169), 1244797. doi: 10.1126/science. 1244797
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325(5936), 6467.
Henssen, A. & Jahns, H.-M. (1974). Lichenes, pp. 138149. Eine Einführung in die Flechtenkunde. Georg Thieme Verlag, Stuttgart.
Hess, S.L., Henry, R.M., Leovy, C.B., Ryan, J.A. & Tillman, J.E. (1977). Meteorological results from the surface of Mars: viking 1 and 2. J. Geophys. Res. 82(A28), 45594574.
Hill, J.O. (1991). For Better Thermal Analysis III, Special Edition of the International Confederation for Thermal Analysis (ICTA), University of Rome.
Houtkooper, J.M. & Schulze-Makuch, D. (2009). Possibilities for the detection of hydrogen peroxide–water-based life on Mars by the Phoenix Lander. Planet Space Sci. 57(4), 449453.
Houtkooper, J.M. & Schulze-Makuch, D. (2010). The possible role of perchlorates for Martian life. J Cosmol 5, 930939.
Hubbard, G., Naderi, F. & Garvin, J. (2002). Following the water, the new program for Mars exploration. Acta Astronaut 51, 337350.
Jakosky, B.M., Nealson, K.H., Bakermans, C., Ley, R.E. & Mellon, M.T. (2003). Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3(2), 343350.
Jänchen, J., Meeßen, J., Ott, S., Sànches, F.J. & de la Torre, R. (2013). Low temperature interaction of humidity with the lichens Buelliafrigida and Circinariagyrosa. Extended abstract No. 1504, In Proc. of the 44th LPSC 2013.
Jänchen, J., Bauermeister, A., Feyh, N., de Vera, J.-P., Rettberg, P., Flemming, H.-C. & Szewzyk, U. (2014a). Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions. Planet Space Sci. 98, 163168.
Jänchen, J., Herzog, T.H., Meeßen, J., Ott, S., Feist, M. & de Vera, J.-P.P. (2014b). Impact of UVC exposure on the water retention of the lichen Buelliafrigida. Extended abstract No 1260, In Proc. of the 45th LPSC 2014
Kaisersberger, E. & Post, E. (1997). Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochim. Acta 295, 7393.
Kappen, L. (1973). Environmental response and effects. Response to extreme environments. In The Lichens, ed. Ahmadjian, V. & Hale, M.E., pp. 346348. Academic Press, New York, London.
Kappen, L. (1988). Ecophysiological relationships in different climatic regions. In CRC Handbook of Lichenology, ed. Galun, M., vol. II, pp. 3799. CRC Press, Boca Ranton.
Kappen, L. (1993). Plant activity under snow and ice, with particular reference to lichens. Arctic 46(4), 297302.
Kappen, L. & Valladares, F. (1999). Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In Handbook of Functional Plant Ecology, ed. Pugnaire, F.I. & Valladares, F., pp. 980. Marcel Dekker, Basel.
Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., Jakosky, B.M., Miner, E.D. & Palluconi, F.D. (1977). Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(A28), pp. 42494291.
Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. & Pfeifhofer, H.W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl Acad. Sci. USA 102(8), 31413146.
Lange, O.L. (1969). Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalinamaciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158, 324333.
Lange, O.L. (1992). Pflanzenleben unter Stress, pp. 213217. Echter Würzburg Fränkische Gesellschaftsdruckerei und Verlag, Würzburg.
Lange, O.L., Kilian, E. & Ziegler, H. (1986). Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71, 104110.
Lange, O.L., Green, T.G.A. & Reichenberger, H. (1999). The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. J Plant Physiol. 154, 157166.
Lange, O.L., Green, T.G.A. & Heber, U. (2001). Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance. J. Exp. Bot., Special Issue 52(363), 20332042.
Malin, M.C., Edgett, K.S., Posiolova, L.V., McColley, S.M., Dobrea, E.Z. & Noe, E.A. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314(5805), 15731577.
Marchant, D.R. & Head, J.W. (2007). Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192, 187222.
McBain, J.W. & Bakr, A.M. (1926). A new sorption balance. J. Am. Chem. Soc. 48, 690.
McEwen, A.S., Dundas, C.M., Mattson, S.S., Toigo, A.D., Ojha, L., Wray, J.J., Chojnacki, M., Byrne, S., Murchie, S.L. & Thomas, N. (2012). Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7, 5358.
McKay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3(2), 393406.
Meeßen, J., Sánchez, F.J., Brandt, A., Balzer, E.M., de la Torre, R., Sancho, L.G., de Vera, J.P. & Ott, S. (2013). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Orig. Life Evol. Biosph. 43(3), 283303.
Meeßen, J., Sánchez, F.J., Sadowsky, A., de la Torre, R., Ott, S. & de Vera, J.-P. (2014). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Orig. Life. Evol. Biosph. 43(4), 501526.
Meredith, P. & Riesz, J. (2004). Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol 79(2), 211216.
Ming, D.W. et al. (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1245267. doi: 10.1126/science.1245267
Möhlmann, D.T. (2004). Water in the upper Martian surface at mid-and low-latitudes: presence, state, and consequences. Icarus 168(2), 318323.
Möhlmann, D.T. (2008). The influence of van der Waals forces on the state of water in the shallow subsurface of Mars. Icarus 195(1), 131139.
Möhlmann, D.T. (2010). The three types of liquid water in the surface of present Mars. Int. J. Astrobiol. 9(1), 4549.
Murphy, J.R., Leovy, C.B. & Tillman, J.E. (1990). Observations of Martian surface winds at the Viking Lander 1 site. J. Geophys. Res. 95(B09), 1455514576.
Nybakken, L., Solhaug, K.A., Bilger, W. & Gauslaa, Y. (2004). The lichens Xanthoriaelegans and Cetrariaislandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140, 211216.
Onofri, S. et al. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5), 508516.
Øvstedal, D.O. & Lewis Smith, R.I. (2001). Lichens of Antarctica and South Georgia. A Guide to their Identification and Ecology, pp. 66365. Cambridge University Press, Cambridge.
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrine, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C. & the OMEGA Team (2005). Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623627.
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G. & Sancho, L.G. (2011). Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology 11(4), 281292.
Rennó, N.O. et al. (2009). Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. 114(E1), 19912012.
Ried, A. (1960). Thallusbau und Assimilationshaushalt von Laub- und Krustenflechten. BiolZbl 79, 129134.
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L.G., Ott, S. & de la Torre, R. (2012). The resistance of the lichen Circinariagyrosa (nom. provis.) towards simulated Mars conditions−a model test for the survival capacity of a eukaryotic extremophile. Planet Space Sci. 72(1), 102110.
Sánchez, F.J., Meeßen, J., Ruiz, M., Sancho, L.G., Ott, S., Vílchez, C., Horneck, G., Sadowsky, A. & de la Torre, R. (2014). UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpongeographicum and Circinariagyrosa: role of the hydration state and cortex/screening substances. Int. J. Astrobiol. 13(1), 118.
Sancho, L.G., Schroeter, B. & del Prado, R. (2000). Ecophysiology and morphology of the globular erratic lichen Aspiciliafruticulosa (Eversm.)Flag.from Central Spain. BiblLichenologica 75, 137147.
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. (2007). Lichens survive in space: results from 2005 LICHENS experiment. Astrobiology 7(3), 443454.
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P. & Onofri, S. (2012). The LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 42, 253262.
Schultze, D. (1971). Differentialthermoanalyse, Deutscher Verlag der Wissenschaften, 2nd edn, p. 27. Berlin.
Sigfridsson, B. & Oquist, G. (1980). Preferential distribution of excitation energy into photosystem I of desiccated samples of the lichen Cladoniaimpexa and the isolated lichen-alga Trebouxiapyriformis . Physiol. Plant 49(4), 329335.
Smith, D.C. (1962). The biology of lichen thalli. Biol. Rev. 37, 537542.
Smith, P.H. et al. (2009). H2O at the phoenix landing site. Science 325(5936), 5861.
Sohrabi, M. (2012). Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae). PhD Thesis, Publications in Botany from the University of Helsinki. http://urn.fi/URN:ISBN:978-952-10-7400-4
Sun, H.J., Nienow, J.A. & McKay, C.P. (2010). The antarctic cryptoendolithic microbial ecosystem. In Life in Antarctic Deserts and other Cold Dry Environments—Astrobiological Analogs, ed. Doran, P.T., Lyons, W.B. & McKnight, D.M., pp. 110138. Cambridge University Press, Cambridge.
Tillman, J.E. (1988). Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93(D8), 94339451.
Valladares, F., Wierzchos, J. & Ascaso, C. (1993). Porosimetric study of the lichen family Umbilicariaceae: anatomical interpretation and implications for water storage capacity of the thallus. Am. J. Bot. 80, 263272.
Vaniman, D.T. et al. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343(6169), 1243480. doi: 10.1126/science.1243480
Williams, R.M.E. et al. (2013). Martian fluvial conglomerates at Gale Crater. Science 340(6136), 10681072.

Keywords

Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties

  • J. Jänchen (a1), J. Meeßen (a2), T.H. Herzog (a1), M. Feist (a3), R. de la Torre (a4) and J.-P.P. deVera (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed