Skip to main content Accessibility help

Evolution of Precambrian life in the Brazilian geological record

  • Thomas Rich Fairchild (a1), Evelyn A.M. Sanchez (a2), Mírian Liza A.F. Pacheco (a2) and Juliana de Moraes Leme (a1)


Precambrian rocks comprise nearly one-quarter of the surface of Brazil and range from Paleoarchean (ca. 3.6 Ga) to the latest Ediacaran (0.542 Ga) in age. Except for controversial phosphatized ‘embryo-like’ microfossils like those from the lower Ediacaran Doushantuo Formation, China and complex rangeomorphs, Brazilian research has revealed all major categories of Precambrian life forms described elsewhere – microbialites, biomarkers, silicified microfossils, palynomorphs, vase-shaped microfossils, macroalgae, metazoans, vendobionts and ichnofossils – but the paleobiological significance of this record has been little explored. At least four occurrences of these fossils offer promise for increased understanding of the following aspects of Precambrian biospheric evolution: (i) the relationship of microbialites in 2.1–2.4 Ga old carbonates of the Minas Supergroup in the Quadrilátero Ferrífero, Minas Gerais (the oldest Brazilian fossils) to the development of the early oxygenic atmosphere and penecontemporaneous global tectonic and climatic events; (ii) the evolutionary and biostratigraphic significance of Mesoproterozoic to Ediacaran organic-walled microfossils in central–western Brazil; (iii) diversity and paleoecological significance of vase-shaped heterotrophic protistan microfossils in the Urucum Formation (Jacadigo Group) and possibly the Bocaina Formation (Corumbá Group), of Mato Grosso do Sul; and (iv) insights into the record of skeletogenesis and paleoecology of latest Ediacaran metazoans as represented by the abundant organic carapaces of Corumbella and calcareous shells of the index fossil Cloudina, of the Corumbá Group, Mato Grosso do Sul. Analysis of the Brazilian Precambrian fossil record thus holds great potential for augmenting paleobiological knowledge of this crucial period on Earth and for developing more robust hypotheses regarding possible origins and evolutionary pathways of biospheres on other planets.


Corresponding author


Hide All
Albani, A.E. et al. . (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100104.
Almeida, (1984). Província Tocantins. Setor sudoeste. In O Pré-Cambriano do Brasil, ed. Almeida, & Hasuy, Y. (coord.) pp. 265281, São Paulo, Brazil, Edgard Blücher.
Alvarenga, C.J.S., Moura, C.A.V., Gorayeb, P.S.S. & Abreu, F.A.M. (2000). Paraguay and Araguaia Belts. In Tectonic Evolution of South America, ed. Cordani, U.G., Milani, E.J., Thomaz Filho, A. & Campos, D.A. (Org.), 31st International Geological Congress, Rio de Janeiro, vol. 1, 1st edn. p. 183193.
Alvarenga,, Boggiani, P.C., Babinski, M., Dardenne, M.A., Figueiredo, M.F., Santos, R.V. & Dantas, E.L. (2009). The Amazonian paleocontinent. In Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwest Gondwana, ed. Gaucher, C., Sial, A.N., Halverson, G.P. & Frimmel, H.E. p. 498. Elsevier, Amsterdam.
Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. & Burch, I.W. (2006). Stromatolite reef from early Archean era of Australia. Nature 441, 714718.
Anbar, A.D. & Knoll, A.H. (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297(5584), 11371142.
Babcock, L.E., Grunow, A.M., Sadowski, G.R. & Leslie, S.A. (2005). Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 718.
Babinski, M., Chemale, F. Jr. & Van Schmus, W.R. (1995). The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res. 72, 235245.
Babinski, M., Trindade, R.I.F., Alvarenga, C.J.S., Boggiani, P.C., Liu, D., Santos, R.V. & Brito Neves, B.B. (2006). Cronology of neoproterozoic ice ages in Central Brazil. In Short Papers, Fifth South American Symposium on Isotope Geology, Punta del Leste, pp. 223226.
Babinski, M., Boggiani, P.C., Fanning, M., Simon, C.M. & Sial, A.N. (2008). U-Pb shrimp geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, southern Paraguay belt, Brazil. In Proceedings of the Sixth South American Symposium on Isotope Geology, San Carlos de Bariloche, 2008, p. 160.
Barley, M.E., Bekker, A. & Krapez, B. (2005). Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci. Lett. 238, 156171.
Bekker, A. & Eriksson, K.A. (2003). A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland breakup. Precambrian Res. 120, 327364.
Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D., Coetzee, L.L. & Eriksson, K.A. (2001). Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am. J. Sci. 301, 261285.
Bekker, A., Sial, A.N., Karhu, J.A., Ferreira, V.P., Noce, C.M., Kaufman, A.J., Romano, A.W. & Pimentel, M.M. (2003). Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilatero Ferrífero (Iron Quadrangle), Brasil: a stratigraphic record of Early Proterozoic atmosphere, biogeochemical and climatic change. Am. J. Sci. 303, 865904.
Bengtson, S. (1994). The advent of animal skeletons. In Early Life on Earth, ed. Bengtson, S., pp. 412425, Columbia University Press, New York.
Bengtson, S. & Zhao, Y. (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Science 257, 367369.
Bengtson, S., Rasmussen, B. & Krapez, B. (2007). The Paleoproterozoic megascopic Stirling biota. Paleobiology 33(3), 351381.
Bertolino, L.C. & Pires, F.R.M. (1995). Novas ocorrências de estruturas estromatolíticas nas rochas carbonáticas da Formação Gandarela, Quadrilátero Ferrífero, Minas Gerais. Anais do 8a Simpósio de Geologia de Minas Gerais, Boletim 13, 97.
Bloeser, B., Schopf, J.W., Horodyski, R.J. & Breed, W.J. (1977). Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. Science 18, 676679.
Boggiani, P.C. (1998). Análise Estratigráfica da Bacia Corumbá (Neoproterozóico) – Mato Grosso do Sul. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 181.
Boggiani, P.C. & Gaucher, C. (2004). Cloudina from Itapucumi Group (Vendian, Paraguay): age and correlation. In First Symposium on Neoproterozoic–Early Paleozoyc Events in SW-Gondwana, pp. 1315. Extended Abstracts, São Paulo.
Boggiani, P.C., Gaucher, C., Sial, A.N., Babinsky, M., Simon, C.M., Riccomini, C., Ferreira, V.P. & Fairchild, T.R. (2010). Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res. 182, 382401.
Bosak, T., Lahr, D.J.G., Pruss, S.B., Msdonald, F.A., Dalton, L. & Matys, E. (2011). Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth Planet. Sci. Lett. 308, 2940.
Brain, C.K., Prave, A.R., Hoffmann, K., Fallick, A.E., Botha, A., Herd, D.A., Sturrock, C., Young, I., Condon, D.J. & Allison, S.G. (2012). The first animals: ca. 760-million-years-old-sponge-like fossils from Namibia. S. Afr. J. Sci. 108(1/2), 18.
Brasier, M.D. (1992). Background to the Cambrian explosion. J. Geol. Soc. 149, 585587.
Brasier, M.D. & Antcliffe, J.B. (2009). Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J. Geol. Soc. 166, 363384.
Brasier, M.D., Cowie, J.W. & Taylor, M.E. (1994). Decision on the Precambrian–Cambrian boundary stratotype. Episodes 17, 38.
Brasier, M., McLoughlin, N., Green, O. & Wacey, D. (2006). A fresh look at the fossil evidence for early Archaean cellular life. Philos. Trans. R. Br. Soc. 361, 887902.
Brocks, J.J., Logan, G.A., Buick, R. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 5439(285), 10331036.
Budd, G.E. (2008). The earliest fossil record of animals and its significance. Phil. Trans. R. Soc. B. 363, 14251434.
Butterfield, N.J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26(3), 386404.
Butterfield, N.J. (2011). Terminal developments in Ediacaran embryology. Science 334, 16551696.
Burns, S.J. & Matter, A. (1993). Carbon isotope record of the latest Proterozoic from Oman. Eclogae Geol. Helv. 86(2), 595607.
Buss, L.W. & Seilacher, A. (1994). The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20, 14.
Canfield, D.E. (1998). A new model for Proterozoic ocean chemistry. Nature 369, 450453.
Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T. & Strauss, H. (2008). Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science 321, 949952.
Catling, D.C. & Claire, M.W. (2005). How Earth´s atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237(1–2), 120.
Catling, D.C., Glein, C.R., Zahnle, K.J. & McKay, C.P. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5, 415438.
Chen, J.Y., Bottjer, D.J., Oliveri, P., Dornbos, S.Q., Gao, F., Ruffins, S., Chi, H., Li, C.W. & Davidson, E.H. (2004). Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218222.
Chen, Z., Bengtson, S., Zhou, C.M., Hua, H. & Yue, Z. (2008). Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41, 3745.
Chen, J.Y. et al. . (2009). Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: phylogenetic diversity and evolutionary implications. Precambrian Res. 173, 191200.
Ciguel, J.H.G., Góis, J.R. & Aenolaza, F.G. (1992). Ocorrêcia de icnofósseis em depositos molássicos da Formação Camarinha (Neoproterozoico III – Cambriano Inferior), no Estado do Paraná, Brasil. Serie Correl. Geol. 9, 157158.
Clapham, M.E. & Narbonne, G.M. (2002). Ediacaran epifaunal tiering. Geology 30, 627630.
Cohen, P.A., Knoll, A.H. & Kodner, R.B. (2009). Large spinose microfossils in Ediacaran rocks as setting stages of early animals. Proc. Natl. Acad. Sci. U.S.A. 106, 65196524.
Conway Morris, S. (1992). Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review. J. Geol. Soc. 146, 631636.
Conway Morris, S. (2000). Evolution: bringing molecules into the fold. Cell 100, 111.
Conway Morris, S., Mattes, B.W. & Menge, C. (1990). The early skeletal organism Cloudina: new occurrences from Oman and possibly China. J. Sci. 290, 245260.
Couëffé, R. & Vecoli, M. (2011). New sedimentological and biostratigraphic data in the Kwahu Group (Meso- to Neo- Proterozoic), southern margin of the Volta Basin, Ghana: stratigraphic constraints and implications on regional lithostratigraphic correlations. Precambrian Res. 189, 155175.
Da Rosa, A.A.S., Paim, P.S.G., Chemale, F. Jr., Zucatti Da Rosa, A.L. & Girardi, R.V. (1997). The ‘state-of-art’ of the Cambrian Itajaí Basin (Southern Brazil). In 18° IAS Regional European Meeting of Sedimentology, Heidelberg, September 2–4, 1997, p. 112.
Dardenne, M.A. & Campos Neto, M.C. (1975). Estromatólitos colunares na série Minas (MG). Rev. Brasil. Geoci. 5, 99105.
Droser, M.L., Gehling, J.G. & Jensen, S.R. (2006). Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr. Palaeoclimatol. Palaeoecol. 232(2–4), 131147.
Drukas, C.O. & Basei, M.A.S. (2009). Proveniência e idade dos sedimentos do Grupo Itajaí, SC, Brasil. In Boletim de Resumos Expandidos, Simpósio 45 anos de Geocronologia no Brasil, expanded abstract 1, pp. 239241.
Dzik, J. (2003). Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr. Comp. Biol. 43, 114126.
Erwin, D.H. & Tweedt, S. (2011). Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol. Ecol. 26, 417433.
Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D. & Peterson, K.J. (2011). The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334(6059), 10911097.
Fairchild, T.R., Barbour, A.P. & Haralyi, N.L.E. (1978). Microfossils in the ‘Eopaleozoic’ Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil. Bol. Inst. Geoci. 9, 7479.
Fedonkin, M.A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Palaeontol. Res. 7, 941.
Fedonkin, M.A. & Waggoner, B.M. (1997). The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868871.
Fedonkin, M.A., Simonetta, A. & Ivantsov, A.Y. (2007). New data on Kimberella, the Vendian mollusk-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. Geol. Soc., Lond., Sp. Publ. 286, 157179.
Fontaneta, G.T. (2012). Dolomitização e fosfogênese na Formação Bocaina, Grupo Corumbá (Ediacarano). Master's Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 139.
Freitas, B.T., Warren, L.V., Boggiani, P.C., De Almeida, R.P. & Piacentini, T. (2011). Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo. Sediment. Geol. 238, 4870.
Gaucher, C. & Germs, G.J.B. (2006). Recent advances in South African Neoproterozoic-Early Palaeozoic biostratigraphy: correlation of the Cango Cavez and Gamtoos Groups and acritarchs of the Sardinia Bay Formation, Saldania Belt. S. Afr. J. Geol. 109, 193214.
Gaucher, C., Boggiani, P.C., Sprechman, P., Sial, A.N. & Fairchild, T.R. (2003). Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, paaleoclimatic and palaeobiologic implications. Precambrian Res. 120, 241278.
Gaucher, C., Frimmel, H.E. & Germs, G.J.B. (2005). Organic-Walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geol. Mag. 142, 539559.
Germs, G.J.B. (1972). New shelly fossils from Nama Group, South West Africa. Am. J. Sci. 272, 752761.
Germs, G.J.B. (1983). Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa. Geol. Soc. S. Afr. Spec. Publ. 11, 89114.
Grant, S.W.F. (1990). Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am. J. Sci. 290, 261294.
Grey, K. (2005). Ediacaran palynology of Australia. Mem. Assoc. Australas. Palaeontol. 31, 439.
Grotzinger, J.P., Watters, W.A. & Knoll, A.H. (2000). Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26(3), 334359.
Guadagnin, F., Chemale, F. Jr., Dussin, I.A., Jelinek, A.R., Santos, M.N., Borba, M.L., Justino, D., Bertotti, A.L. & Alessandretti, L. (2010). Depositional age and provenance of the Itajaí Basin, Santa Catarina State, Brazil: implications for SW Gondwana correlation. Precambrian Res. 180, 156182.
Hagadorn, J.W. & Waggoner, B. (2000). Ediacaran fossils from the southwestern Great Basin, United States. J. Paleontol. 74, 349359.
Hahn, G. & Pflug, H.D. (1985). Die Cloudinidae n. fam., Kalk-Rfhren aus dem Vendium und Unter-Kambrium. Senckenbergiana Lethaea 65, 413431.
Hahn, G., Hahn, R., Leonardos, O.H., Pflug, H.D. & Walde, D.H.G. (1982). Kfrperlich erhaltene Scyphozoen-Reste aus dem Jungprekambrium Brasiliens. Geol. Paleontol. 16, 118.
Hallam, A. (1984). Pre-quaternary sea-level changes. Annu. Rev. Earth Planet. Sci. 12, 205243.
Halverson, G.P., Hurtgen, M.T., Porter, S.M. & Collins, A.S. (2009). Neoproterozoic-Cambrian biogeochemical evolution. In Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwestern Gondwana, ed. Gaucher, C., Sial, A.N., Halverson, G.P. & Frimmel, H.E., vol. 16, pp. 351365. Developments in Precambrian Geology. Elsevier, the Netherlands.
Han, T.M. & Runnegar, B. (1992). Megascopic eukariotik algae from the 2.1- billion-year-old negaunee iron-formation, Michigan. Science 257, 232235.
Heaman, L.M. (1997). Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25, 299302.
Hidalgo, R.L.L. (2007). Vida após as glaciações globais neoproterozóicas: um estudo microfossifífero de capas carbonáticas dos Crátons do São Francisco e Amazônico. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 195.
Hofmann, H.J. & Chen, J. (1981). Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Can. J. Earth Sci. 18(3), 443447.
Hofmann, H.J. & Mountjoy, E.W. (2001). Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada´s oldest shelly fossils. Geology 29(12), 10911094.
Hoffman, P.F. & Schrag, D.P. (2002). The snowball earth hypothesis: testing the limits of global change. Terra Nova 14, 129155.
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998). A Neoproterozoic Snowball Earth. Science 281, 13421346.
Holland, H.D. (2002). Volcanic gases, black smokers, and great oxidation event. Geochim. Cosmochim. Acta 66(21), 38113826.
Holland, H.D. (2009). Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73(18), 52415255.
Hua, H., Pratt, B.R. & Zhang, L.Y. (2003). Borings in Cloudina shells: complex predator − prey dynamics in the terminal Neoproterozoic. Palaios 18, 454459.
Hua, H., Chen, Z., Yuan, X., Zhang, L. & Xiao, S. (2005). Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33, 277280.
Huldtgren, T., Cunninghan, J.A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P.C.J. & Bengtson, S. (2011). Fossilized nuclei and germination structures identify Ediacaran ‘animal Embryos’ as encysting protists. Science 334, 16961699.
Huntley, J.W., Xiao, S. & Kowalewski, M. (2006). 1.3 Billion years of acritarch history: an empirical morphospace approach. Precambrian Res. 144, 5268.
Igisu, M., Ueno, Y., Shimojima, M., Nakashima, S.M., Awramik, S.M., Ohta, H. & Maruyama, S. (2009). Micro-FTIR spectroscopic signatures of bacterial lipids in proterozoic microfossils. Precambrian Res. 173, 1926.
Javaux, E.J., Knoll, A.H. & Walter, M.R. (2003). Recognizing and interpreting the fossils of early eukaryoter. Origins Life Evol. Biosph. 33, 7594.
Karlstrom, K.E. et al. , (2000). Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology 28(7), 619622.
Kasting, J.F., Pavlov, A.A. & Siefert, J.L. (2001). A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Origins Life Evol. Biosph. 31, 271285.
Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. & Steinberger, R.E. (2000). Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. U.S.A. 97, 14001405.
Knoll, A.H. (2003). Life on a Young Planet – The First Three Billion Years of Evolution on Earth, p. 277. Princeton University Press, Princeton/Oxford.
Knoll, A.H. & Bambach, R.K. (2000). Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? Paleobiology 26(4), 114.
Knoll, A.H., Javaux, E.J., Hewitt, D. & Cohen, P. (2006). Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. 361, 10231038.
Kontorovich, A.E. et al. (2008). A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3). Russ. Geol. Geophys. 49, 932939.
Kopp, R.E., Kirschvink, J.L., Hilburn, I.A. & Nash, C.Z. (2005). The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 102, 1113111136.
Laflamme, M., Xiao, S. & Kowalewski, M. (2009). Osmotrophy in modular Ediacara organisms. Proc. Natl. Acad. Sci. U.S.A. 106(34), 1443814443.
Lamb, D.M., Awramik, S.M., Chapman, D.J. & Zhu, S. (2009). Evidence for eukaryotic diversification in the 180 million year old Changzhougou Formation, North China. Precambrian Res. 173, 93104.
Leipnitz, I.I., Paim, P.S.G., Da Rosa, A.A.S., Zucatti Da Rosa, A.L. & Nowatzki, C.H. (1997). Primeira Ocorrência de Chancelloriidae no Brasil. In Congresso Brasileiro de Paleontologia. Boletim de Resumos, p. 1.
Love, G.D. et al. (2009). Fossil steroids record the apparence of demospongiae during the cryogenian period. Nature 457, 718721.
Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A. & Demicco, R.V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 10861088.
McFadden, K.A., Xiao, S., Zhou, C. & Kowalewski, M. (2009). Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo formation in the Yangtze Gorges area, South China. Precambrian Res. 173, 170190.
McKerrow, W.S., Scotese, C.R. & Brasier, M.D. (1992). Early Cambrian continental reconstructions. J. Geol. Soc., London 149(4), 599606.
Meira, F.V.E. (2011). Caracterização Tafonômica e estratigráfica de Cloudina lucianoi (Beurlen & Sommer, 1957) Zaine & Fairchild, 1985, no Grupo Corumbá, ediacarano do sudeste do Brasil. Master´s Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 115.
Mills, B., Watson, A.J., Goldbatt, C., Boyle, R. & Lenton, T.M. (2011). Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature Geosci. 4, 861864.
Moczydlowska, M. (2005). Taxonomic review of some Ediacaran acritarchs from the Siberian platform. Precambrian Res. 136(3–4), 283307.
Moczydlowska, M. (2008a). New records of late Ediacaran microbiota from Poland. Precambrian Res. 167, 7192.
Moczydlowska, M. (2008b). The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Res. 167(1–2), 115.
Mojzsis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature 384, 5559.
Nagy, R.M., Porter, S.M., Dehler, C.M. & Shen, Y. (2009). Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation. Nature GeoSci. 2, 415418.
Narbonne, G.M. (2004). Modular construction of early Ediacaran complex life forms. Science 305, 11411144.
Narbonne, G.M. (2005). Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421442.
Narbonne, G.M. (2011). When life got big. Nature 470, 339340.
Netto, R.G. & Zucatti Da Rosa, A.L. (1997). Registro icnofossilífero da Bacia do Itajaí, SC: Uma primeira visão. In Congresso Brasileiro de Paleontologia, 15, Boletim de Resumos, p. 136.
Netto, R.G., Paim, P.S.G. & Da Rosa, C.L.M. (1992). Informe preliminar sobre a ocorrência de traços fósseis nos sedimentitos das bacias do Camaquã e Santa Barbara. In I Workshop sobre Bacias Molássicas Brasilianas, São Leopoldino, RS, agosto de 1992, expanded abstracts: 90–96.
Nogueira, A.C.R., Riccomini, C., Sial, A.N., Moura, C.A.V., Trindade, R.I.F. & Fairchild, T.R. (2007). Carbon and strontium isotope fluctuations and paleocean changes in the Late Neoproterozoic Araras carbonate platform, southern Amazon Craton, Brazil. Chem. Geol. 237, 168190.
Nogueira, V.L. et al. (1998). Projeto Bonito-Aquidauana. Relatório final. Goiânia, DNPM/CPRM, 14 v. (Relatório do Arquivo Técnico da DGM, 2744).
Nutman, A.P. (2007). Apatite recrystallisation during prograde metamorphism, Cooma, SE Australia: implications for using apatite-graphite association as a biotracer in ancient metasedmients. Austr. J. Earth Sci. 54, 10231032.
Oehler, D.Z., Robert, F., Walter, M.R., Sugitani, K., Allwood, A., Meibom, A., Mostefaoui, S., Selo, M., Thomen, A. & Gibson, E.K. (2009). NanoSIMS: Insights to biogenicity and syngeneity of Archean carbonaceous structures. Precambrian Res. 173, 7078.
Ohmoto, H. (2003). Reply to comments by H. D. Holland on ‘The oxygen geochemical cycle: Dynamics and stability’. Geochim. Cosmochim. 67(4), 791795.
Olcott, A.N., Sessions, A.L., Corsetti, F.A., Kaufman, A.J. & Oliveira, T.F. (2005). Biomarker evidence for photosynthesis during Neoproterozoic glaciation. Science 310, 471474.
Oliveira, R.S. (2010). Depósitos de Rampa carbonática neoproterozóica do Grupo Corumbá, região de Corumbá, Mato Grosso. Instituto de Geociências, Universidade Federal do Pará, Belém, PA, Brazil. p. 88.
Pacheco, M.L.A.F. (2011). Raman spectra of the Ediacaran fossil Corumbella werneri Hahn et al. (1982). In São Paulo Advanced School of Astrobiology, 2 São Paulo, SP. Abstracts, 2011, v. 1.
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2010a). Re-evaluation of the morphology and systematic affinities of Corumbella werneri Hahn et al. 1982, Tamengo Formation (Ediacaran), Corumbá, Brazil. In X Congreso Argentino de Paleontología y Bioestratigrafía, VII Congreso Latinoamericano de Paleontología, La Plata, Argentina, Libro de resúmenes, p. 193.
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2010b). Reinterpretação de atributos morfológicos de Corumbella werneri Hahn et al. 1982 (Formação Tamengo, Bacia Corumbá, Mato Grosso do Sul) por meio de uma análise tafonômica básica. In PALEO SP 2010, Reunião Anual da Sociedade Brasileira de Paleontologia, Rio Claro. Livro de resumos da PALEO SP 2010, Reunião Anual da Sociedade Brasileira de Paleontologia, 2010. CD-Rom.
Pacheco, M.L.A.F., Leme, J.M. & Machado, A.F. (2011a). Taphonomic analysis and geometric modelling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J. Taphon. 9(4), available online.
Pacheco, M.L.A.F., Leme, J.M. & Fairchild, T.R. (2011b). Análise tafonômica de Corumbella werneri Hahn et al. 1982 (Formação Tamengo, Grupo Corumbá, Mato Grosso do Sul): alterações morfológicas e implicações no estabelecimento de afinidades taxonômicas. In XXII Congresso Brasileiro de Paleontologia, Natal, RN. Atas do XXII Congresso Brasileiro de Paleontologia, 2011, vol. 22, pp. 449452.
Paim, P.S.G., Leipnitz, I., Netto, R.G., Da Rosa, A.A.S. & Zucatti Da Rosa, A.L. (1997). Preliminary report on the occurrence of Chancelloria the Itajaí Basin, Southern Brazil. Rev. Brasil. Geoci. 27(3), 303308.
Palacios, T. (1989). Microfósiles de pared orgánica del Proterozoico superior (region central de la Península Ibérica). Mem. Museo Paleontol. Univ. Zaragoza 3(2), 191.
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. & Freedman, R. (2000). Greenhouse warning CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 981990.
Pell, S.D., McKirdy, D.M., Jansyn, J. & Jenkins, R.J.F. (1993). Ediacaran carbon isotope stratigraphy of South Australia – an initial study. Trans. R. Soc. S. Austr. 117(4), 153161.
Peng, Y., Bao, H. & Yuan, X. (2009). New morphological observations for Paleoproterozoic acritarchs from Chuanlinggou Formation, North China. Precambrian Res. 168, 223232.
Peterson, K.J. & Butterfield, N.J. (2005). Origin of the Eumetazoa: testing ecological predictions of molecular clocks against Proterozoic fossil record. Proc. Natl. Acad. Sci. U.S.A. 102, 95479552.
Peterson, K.J., Cotton, J.A., Gehling, J.G. & Pisani, D. (2008). The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil record. Phil. Trans. R. Soc. B: Biol. Sci. 363(1469), 14351443.
Pierrehumbert, R.T., Abbot, D.S., Voigt, A. & Knoll, D. (2011). Climate of the Neoproterozoic. Annu. Rev. Earth Planet Sci. 39, 417460.
Pimentel, M.M., Rodrigues, J.B., Giustina, M.E.S.D. & Junges, S.L. (2009). Evolução Geológica da Faixa Brasília com base em dados de proveniência de sedimentos detríticos usando LAM-ICPMS. In XI Simpósio de Geologia do Centro-Oeste, Programa de resumos: Cuiabá, Mato Grosso, Brazil, p. 31.
Porter, S.M. (2004). The fossil record of early eukaryotic diversification. Paleontol. Soc. Papers 10, 3550.
Porter, S.M. (2011). The rise of predators. Geology 39(6), 607608.
Porter, S.M. & Knoll, A.H. (2000). Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26(3), 360385.
Porter, S.M., Meisterfeld, R. & Knoll, A. (2003). Vase-shapedd microfossils from the neoproterozoic chuar group, grand canyon: a classification guided by modern testate amoebae. J. Paleontol. 77(3), 409429.
Rasmussen, B., Fletcher, I.R., Brocks, J.J. & Kilburn, M.R. (2008). Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 11011104.
Rothman, D.H., Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 100(14), 81248129.
Sallun-Filho, W. & Fairchild, T.R. (2005). Um passeio pelo passado no shopping: estromatólitos no Brasil. Rev. Ciênc. Hoje 37, 2229.
Sanchez, E.A.M. & Fairchild, T.R. (2012). Raman spectroscopy as an useful tool for fossil biogenicity questions: example from Goiás, Brazil. In Workshop on Applied Raman Spectrscopy, oral communication, 23–25 April, 2012, São Paulo, Brazil.
Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117134.
Schobbenhaus, C. & Brito-Neves, B.B. (2003). A geologia do Brasil no contexto da Plataforma Sul-Americana. In Geologia, Tectônica e Recursos Minerais do Brasil, ed. Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M. & Alves, J.H., pp. 554. Companhia de Pesquisa de Recursos Minerais – Geological Survey of Brazil, Brasília.
Schopf, J.W. (2006). The first billion years: when did life emerge? Elements 2, 229233.
Schopf, J.W. & Kudryavtsev, A.B. (2009). Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res. 173, 3949.
Seilacher, A. (1989). Vendozoa: organic construction in the Proterozoic biosphere. Lethaia 2, 229239.
Seilacher, A. (1999). Biomat-related lifestyles in the Precambrian. Palaios 14, 8693.
Seilacher, A. (2007). The nature of vendobionts. In The rise and fall of Ediacaran Biota, ed. Vickers-Rich, P. & Komarower, P., vol. 286, pp. 387397. Geological Society, London, Special Publications.
Seilacher, A., Grazhdankin, D. & Legouta, A. (2003). Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol. Res. 7(1), 4354.
Sergeev, V.N. (2006). The importance of Precambrian microfossils for modern biostratigraphy. Paleontol. J. 40(5), 664673.
Shen, Y., Zhang, T. & Hoffman, P.F. (2008). On the coevolution of Ediacaran oceans and animals. Proc. Natl. Acad. Sci. U.S.A. 105(21), 73767381.
Shields-Zhou, G. & Och, L. (2011). The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 3(21), 411.
Silva, L.C. & Dias, A.deA. (1981). Os segmentos mediano e setentrional do Escudo Catarinens. In Congresso Brasileiro de Geologia, Anais, pp. 25902598.
Simon, C.M. 2007. Quimioestratigrafia isotópica (C, O, Sr) dos carbonatos da Formação Tamengo, Grupo Corumbá, MS. Instituto de Geociências, Universidade de São Paulo, end of course paper, p. 43.
Simonetti, C. (1994). Paleobiologia de sedimentos Meso e Neoproterozoicos da porção meridional do Cráton do São Francisco. Master's Degree Dissertation, Instituto de Geociências, Universidade de São Paulo, p. 137
Simonetti, C. & Fairchild, T.R. (2000). Proterozoic microfossils from subsurface siliciclastic rocks of the São Francisco Craton, south-central Brazil. Precambrian Res. 103, 129.
Souza, P.C. & Müller, G. (1984). Primeiras estruturas algais comprovadas na Formação Gandarela, Quadrilátero Ferrífero. Rev. Esc. Minas 37(2), 1321.
Urban, H., Stribrny, B. & Lippolt, H. (1992). Iron and manganes deposits of the urucum district, Mato Grosso do Sul, Brazil. Econ. Geol. 87, 13751392.
Vieira, L.C., Trindade, R.I.F., Nogueira, A.C.R. & Ader, M. (2007). Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil. C. R. Geosci. 339, 240258.
Wacey, D., Kilburn, M., Saunders, M., Cliff, J. & Brasier, M.D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci. 4, 698702.
Waldbauer, J.R., Sherman, L.S., Summer, D.Y. & Summons, R.E. (2009). Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res. 169, 2847.
Walde, D.H.G., Leonardos, O.H., Hahn, G., Hahn, R. & Pflug, H. (1982). The first Precambrian megafossil from South América, Corumbella werneri. An. Acad. Bras. Ciênc. 54(2), 461.
Warren, L.V. (2011). Evolução de sucessões Sedimentares Proterozóicas no Paraguai Setentrioanal. Doctoral Thesis, Universidade de São Paulo, p. 257.
Warren, L.V., Fairchild, T.R., Gaucher, C., Boggiani, P.C., Poiré, D.G., Anelli, L.E. & Inchausti, J.C.G. (2011). Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23, 382389.
Warren, L.V., Pacheco, M.L.A.F., Fairchild, T.R., Simões, M.G., Riccomini, C., Boggiani, P.C. & Cáceres, A.A. (2012) The Dawn of animal skeletogenesis: ultrastructural analysis of Ediacaran metazoan Corumbella werneri. Geology (In press).
Westall, F. (2005). Early life on earth and analogies to mars. In Advances in Astrobiology and Biophysics Series, ed. Tokano, T., p. 45. Springer-Verlag, Berlin.
Willman, S. & Moczydlowska, M. (2008). Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Res. 162, 498530.
Wood, R.A. (2011). Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization. Earth-Sci. Rev. 106(1–2), 184190.
Xiao, S. & Knoll, A.H. (2000). Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation in Weng'an, Guizhou, South China. J. Paleontol. 74(5), 767788.
Xiao, S. & Laflamme, M. (2009). On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 3140.
Xiao, S., Yuan, X. & Knoll, A.H. (2000). Eumetazoan fossil in terminal Proterozoic phosphorites? Proc. Natl Acad. Sci. U.S.A. 97(25), 1368413689.
Yan, Y. (1991). Shale-facies microflora from Changzhougou Formation (Changcheng System) in Pangjiapu Region, Hebei, China. Acta Micropaleontol. Sin. 8(2), 183195.
Yuan, X., Chen, Z., Xiao, S., Zhou, C. & Hua, H. (2011). An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature 470, 390393.
Zaine, M.F. (1991). Analise dos fósseis de parte da Faixa Paraguai (MS, MT) e seu contexto temporal e paleoambiental. Doctoral Thesis, Instituto de Geociências, Universidade de São Paulo, p. 218.
Zaine, M.F. & Fairchild, T.R. (1987). Novas considerações sobre os fósseis da Formação Tamengo, Grupo Corumbá, SW do Brasil. In X Congresso Brasileiro De Paleontologia, Anais, Rio de Janeiro, vol. 2, pp. 797806.
Zaine, M.F., Simonetti, C. & Fairchild, T.R. (1989). Estudo micropaleontológico de vased-shaped microfossils da Fm. Urucum, Grupo Jacadigo, Mato Grosso do Sul. In XI Congresso Brasileiro de Paleontologia, Curitiba, Resumo das Comunicações, vol. 1, pp. 67.
Zang, W. (1995). Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia. Precambrian Res. 74, 119175.
Zhang, Z. (1986). Clastic facies microfossils from Chuanlinggou Formation (1800 Ma) near Jixian, North China. J. Micropaleontol. 5(2), 916.
Zhou, C.M., Xie, G.W., McFadden, K., Xiao, S.H. & Yuan, X.L. (2007). The diversification and extinction of Doushantou–Pertatataka acritarchs in South China: cause and biostratigraphic significance. Geol. J. 42, 229262.
Zucatti Da Rosa, A.L. (2005). Evidências de vida no Ediacarano Inferior da Bacia do Itajaí, SC, Master´s Degree Dissertation, Centro de Ciências Exatas e Tecnológicas, Universidade do Vale do Rio dos Sinos, p. 56.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed