Skip to main content Accessibility help

Detection of reduced carbon in a basalt analogue for martian nakhlite: a signpost to habitat on Mars

  • John Parnell (a1), Sean McMahon (a1), Nigel J.F. Blamey (a2), Ian B. Hutchinson (a3), Liam V. Harris (a3), Richard Ingley (a3), Howell G.M. Edwards (a3), Edward Lynch (a4) and Martin Feely (a4)...


The Nakhla meteorite represents basaltic rock from the martian upper crust, with reduced carbon indicative of the ingress of carbonaceous fluids. Study of a terrestrial analogue basalt with reduced carbon from the Ordovician of Northern Ireland shows that remote analysis could detect the carbon using Raman spectroscopy. Analysis of gases released by crushing detects methane-rich fluids in the basalt and especially in cross-cutting carbon-bearing veinlets. The results suggest that automated analysis on Mars could detect the reduced carbon, which may be derived from magmatic and/or meteoritic infall sources.


Corresponding author


Hide All
Agee, C.B. et al. (2013). Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339, 780785.
Anderson, T.B., Parnell, J. & Ruffell, A.H. (1995). Influence of basement on the geometry of Permo-Triassic basins in the Northwest British Isles. Geol. Soc. Spec. Publ. 91, 103122.
Arora, A.K., Tomar, V., Aarti, N., Venkateswararao, K.T. & Kamaluddin, (2007). Haematite-water system on Mars and its possible role in chemical evolution. Int. J. Astrobiol. 6, 267271.
Blamey, N.J.F. (2012). Composition and evolution of crustal fluids interpreted using quantitative fluid inclusion gas analysis. J. Geochem. Explor. 116–117, 1727.
Brinckerhoff, W.B., Mahaffy, P.R. & the MSL/SAM and ExoMars/MOMA Investigation Teams (2011). Mass spectrometry on future Mars landers. In Lunar and Planetary Institute, Conference on Analogue Sites for Mars Missions, abstract 6038.
Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. (2002). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191, 345359.
Chassefiere, E. & Leblanc, F. (2011). Methane release and the carbon cycle on Mars. Planet. Space Sci. 59, 207217.
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L. & Malin, M.C. (2001). Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 2387323885.
Courrèges-Lacoste, G., Ahlers, B. & Rull, F. (2007). Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim. Acta A 68, 1023.
Craig, L.E. (1984). Stratigraphy in an accretionary prism: the Ordovician rocks in North Down, Ireland. Trans. R. Soc. Edinb., Earth Sci. 74, 183191.
de Faria, D.L.A., Venâncio Silva, S. & de Oliveira, M.T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873878.
Downs, R.T. (2006). The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In Program and Abstracts of the 19th General Meeting of the Int. Mineralogical Association, Kobe, Japan. O0313.
Edwards, H.G., Vandenabeele, P., Jorge-Villar, S.E., Carter, E.A., Perez, F.R. & Hargreaves, M.D. (2007). The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim. Acta A 68, 11331137.
Edwards, H.G.M. (2007). Raman spectroscopic approach to analytical astrobiology: the detection of key biomolecular markers in the search for life. Orig. Life Evol. Biosph. 37, 335339.
Edwards, H.G.M., Hutchinson, I. & Ingley, R. (2012). The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal. Bioanal. Chem. 404, 17231731.
Evans-Nguyen, T., Becker, L., Doroshenko, V. & Cotter, R.J. (2008). Development of a low power, high mass range spectrometer for Mars surface analysis. Int. J. Mass Spectrom. 278, 170177.
Ferrari, A.C. & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 1409514107.
Frezzotti, M.L., Tecce, F. & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 112, 120.
Gibson, E.K. et al. (2006). Identification and analysis of carbon-bearing phases in the martian meteorite Nakhla. Proc. SPIE 6309, 630901. DOI: 10.1117/12.690503.
Grady, M.M. & Wright, I. (2006). The carbon cycle on early Earth – and on Mars? Phil. Trans. R. Soc. B 361, 17031713.
Hope, G.A., Woods, R. & Munce, C.G. (2001). Raman microprobe mineral identification. Miner. Eng. 14, 15651577.
Jorge Villar, S.E. & Edwards, H.G.M. (2006). Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100113.
Lowenstern, J.B. (2001). Carbon dioxide in magmas and implications for hydrothermal systems. Mineral. Deposita 36, 490502.
Lyons, J.R., Manning, C. & Nimmo, F. (2005). Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L13201.
McCord, T.B. et al. (2012). Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature 491, 8386.
McKay, D.S., Thomas-Keprta, K.L., Clemett, S.J., Gibson, E.K., Le, L., Rahman, Z. & Wentworth, S.J. (2011). Organic carbon features identified in the Nakhla martian meteorite. In 42nd Lunar and Planetary Science Conf., abstract 2673.
McMahon, S., Parnell, J. & Blamey, N.J.F. (2012). Sampling methane in hydrothermal minerals on Earth and Mars. Int. J. Astrobiol. 11, 163167.
McMahon, S., Parnell, J. & Blamey, N.J.F. (2013). Sampling methane in basalt on Earth and Mars. Int. J. Astrobiol. 12, 113122.
Michalski, J.R. & Niles, P.B. (2010). Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751755.
Needham, A.W., Abel, R.L., Tomkinson, T. & Grady, M.M. (2013). Martian subsurface fluid pathways and 3D mineralogy of the Nakhla meteorite. Geochim. Cosmochim. Acta 116, 96110.
Norman, D.I. & Blamey, N.J.F. (2001). Quantitative analysis of fluid inclusion volatiles by a two quadrupole mass spectrometer system. Eur. Curr. Res. Fluid Incl. XVI, 341344.
Oze, C. & Sharma, M. (2007). Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus 186, 557561.
Parker, J.H. Jr., Feldman, D.W. & Ashkin, M. (1967). Raman scattering by silicon and germanium. Phys. Rev. 155, 712714.
Parnell, J., Boyce, A.J. & Blamey, N.J.F. (2010). Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol. 9, 193200.
Parry, W.T. & Blamey, N.J.F. (2010). Fault fluid composition from fluid inclusion measurements, Laramide Age Uinta Thrust Fault, Utah. Chem. Geol. 278, 105119.
Roedder, E. (1984). Fluid inclusions. Mineral. Soc. Am. Rev. Mineral. 12, 646.
Schulte, W., Widani, C., Hofmann, P., Bönke, T., Re, E. & Baglioni, P. (2008). Design and breadboarding of the sample preparation and distribution system of the ExoMars mission. In Proc. Ninth Int. Symp. Artificial Intelligence, Robotics and Automation in Space.
Sephton, M.A., Wright, I.P., Gilmour, I., de Leeuw, J.W., Grady, M.M. & Pillinger, C.T. (2002). High molecular weight organic matter in martian meteorites. Planet. Space Sci. 50, 711716.
Sharpe, E.N. (1970). An occurrence of pillow lavas in the Ordovician of County Down. Irish Natural. J. 16, 299301.
Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G. & Bird, D.K. (2004). H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci.USA 101, 1281812823.
Steele, A. et al. (2012). A reduced organic carbon component in martian basalts. Science 337, 212215.
Stefánsson, A. & Arnórsson, S. (2002). Gas pressures and redox reactions in geothermal fluids in Iceland. Chem. Geol. 190, 251271.
Treiman, A.H. (1993). The parental magma of the Nakhla (SNC) achondrite, inferred from magmatic inclusions. Geochim. Cosmochim. Acta 57, 47534767.
Treiman, A.H. (2003). The Nakhla martian meteorite is a cumulate igneous rock. Mineral. Petrol. 77, 271277.
Vago, J., Gardini, B., Kminek, G., Baglioni, P., Gianfiglio, G., Santovincenzo, A., Bayon, S. & van Winnendael, M. (2006). ExoMars: searching for life on the Red Planet. Eur. Space Agency Bull. 126, 1723.
Wang, A., Haskin, L.A., Lane, A.L., Wdowiak, T.J., Squyres, S.W., Wilson, R.J., Hovland, L.E., Manatt, K.S., Raouf, N. & Smith, C.D. (2003). Development of the Mars microbeam Raman spectrometer (MMRS). J. Geophys. Res. 108, 5005.
Wopenka, B. & Pasteris, J.D. (1993). Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am. Mineral. 78, 533557.


Related content

Powered by UNSILO

Detection of reduced carbon in a basalt analogue for martian nakhlite: a signpost to habitat on Mars

  • John Parnell (a1), Sean McMahon (a1), Nigel J.F. Blamey (a2), Ian B. Hutchinson (a3), Liam V. Harris (a3), Richard Ingley (a3), Howell G.M. Edwards (a3), Edward Lynch (a4) and Martin Feely (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.