Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.385 Render date: 2021-02-26T06:52:04.730Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Buds of the tree: the highway to the last universal common ancestor

Published online by Cambridge University Press:  20 July 2016

Savio Torres de Farias
Affiliation:
Laboratório de Genética Evolutiva Paulo Leminsk, departamento de Biologia Molecular, Universidade Federal da Paraiba, João Pessoa, Paraiba, Brasil.
Francisco Prosdocimi
Affiliation:
Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. e-mail: prosdocimi@bioqmed.ufjr.br
Corresponding

Abstract

The last universal common ancestor (LUCA) has been considered as the branching point on which Bacteria, Archaea and Eukaryotes have diverged. However, the increased information relating to viruses’ genomes and the perception that many virus genes do not have homologs in other organisms opened a new discussion. Based on these facts, there has emerged the idea of an early LUCA that should be moved further into the past to include viruses, implicating that life should have originated before the appearance of cellular life forms. Another point of view from advocates of the RNA-world suggests that the origin of life happened a long time before organisms were capable of organizing themselves into cellular entities. Relevant data about the origin of ribosomes indicate that the catalytic unit of the large ribosomal subunit is what should actually be considered as the turning point that separated chemistry from biology. Other researchers seem to think that a tRNA was probably some sort of a strange attractor on which life has originated. Here we propose a theoretical synthesis that tries to provide a crosstalk among the theories and define important points on which the origin of life could have been originated and made more complex, taking into account gradualist assumptions. Thus, discussions involving the origin of biological activities in the RNA-world might lead into a world of progenotes on which viruses have been taken part until the appearance of the very first cells. Along this route of complexification, we identified some key points on which researchers may consider life as an emerging principle.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bamford, D.H. (2003). Res. Microbiol. 154(4), 231236.CrossRefGoogle Scholar
Caetano-Anolles, G. & Seufferheld, M.J. (2013). J. Mol. Microbiol. Biotechnol. 23(1–2), 152–77. doi: 10.1159/000346551.CrossRefGoogle Scholar
Davidovich, C., Belousoff, M., Bashan, A. & Yonath, A. (2009). Res. Microbiol. 160(7), 487492. doi: 10.1016/j.resmic.2009.07.004.CrossRefGoogle Scholar
Darwin, C. (1859). John Murray, Albermarle street, London.Google Scholar
Dawkins, R. (1977). Oxford University press, Oxford.Google Scholar
Delaye, L., Becerra, A. & Lazcano, A. (2005). Orig. Life. Evol. Biosph. 35(6), 537554.CrossRefGoogle Scholar
Dworkin, J.P., Lazcano, A. & Miller, S.L. (2003). J. Theor. Biol. 222(1), 127134.CrossRefGoogle Scholar
Farias, S.T., do Rêgo, T.G. & José, M.V. (2014a). Front. Genet. (5), 303. doi: 10.3389/fgene.2014.00303. eCollection 2014.Google Scholar
Farias, S.T., Rêgo, T.G. & José, M.V. (2014b). FEBS Open Bio. (4), 175178. doi: 10.1016/j.fob.2014.01.010. eCollection 2014.CrossRefGoogle Scholar
Filée, J. (2013). Curr. Opin. Virol. 3(5), 595599. doi: 10.1016/j.coviro.2013.07.003.CrossRefGoogle Scholar
Forterre, P. (2006). Virus Res. 117(1), 516.CrossRefGoogle Scholar
Forterre, P. (2013a). Biol. Aujourdhui. 207(3), 153168. doi: 10.1051/jbio/2013018.CrossRefGoogle Scholar
Forterre, P. (2013b). J. Mol. Biol. 425(23), 47144726. doi: 10.1016/j.jmb.2013.09.032.CrossRefGoogle Scholar
Forterre, P. & Prangishvili, D. (2009). Res. Microbiol. 160(7), 466472. doi: 10.1016/j.resmic.2009.07.008.CrossRefGoogle Scholar
Forterre, P., Krupovic, M. & Prangishvili, D. (2014). Trends Microbiol. 22(10), 554558. doi: 10.1016/j.tim.2014.07.004.CrossRefGoogle Scholar
Fox, G.E. (2010). Cold Spring Harb. Perspect. Biol. 2(9), a003483. doi: 10.1101/cshperspect.a003483.Google Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Glansdorff, N., Xu, Y. & Labedan, B. (2008). Biol. Direct. 9(3), 29. doi: 10.1186/1745-6150-3-29.CrossRefGoogle Scholar
Gross, R., Fouxon, I., Lancet, D. & Markovitch, O. (2014). BMC Evol. Biol. 30(14), 265. doi: 10.1186/s12862-014-0265-1.CrossRefGoogle Scholar
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. (1983). Cell (3 Pt2), 849857.CrossRefGoogle Scholar
Harris, J.K., Kelley, S.T., Spiegelman, G.B. & Pace, N.R. (2003). Genome Res. 13(3), 407412.CrossRefGoogle Scholar
Hunding, A., Kepes, F., Lancet, D., Minsky, A., Norris, V., Raine, D., Sriram, K. & Root-Bernstein, R. (2006). Bioessays 28(4), 399412.CrossRefGoogle Scholar
Hury, J., Nagaswamy, U., Larios-Sanz, M. & Fox, G.E. (2006). Orig. Life Evol. Biosph. 36(4), 421429.CrossRefGoogle Scholar
Jheeta, S. (2015). Life 5(2), 14451453. doi: 10.3390/life5021445.CrossRefGoogle ScholarPubMed
Kannan, L., Li, H., Rubinstein, B., Mushegian, A. (2013). Biol. Direct. 19(8), 32. doi: 10.1186/1745-6150-8-32.CrossRefGoogle Scholar
Kim, K.M. & Caetano-Anollés, G. (2011). BMC Evol. Biol. 25(11), 140. doi: 10.1186/1471-2148-11-140.CrossRefGoogle Scholar
Koonin, E.V. (2003). Nat. Rev. Microbiol. 1(2), 127136.CrossRefGoogle Scholar
Koonin, E.V., Senkevich, T.G. & Dolja, V.V. (2006). Biol. Direct. 19(1), 29.CrossRefGoogle Scholar
Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. & Cech, T.R. (1982). Cell 31(1), 147157.CrossRefGoogle ScholarPubMed
Lazcano, A. & Miller, S.L. (1996). Cell 85(6), 793798.CrossRefGoogle Scholar
Leipe, D.D., Aravind, L. & Koonin, E.V. (1999). Nucleic Acids Res. 27(17), 33893401.CrossRefGoogle Scholar
Markovitch, O. & Lancet, D. (2014). J Theor Biol. 21(357), 2634. doi: 10.1016/j.jtbi.2014.05.005.CrossRefGoogle Scholar
Mayr, E. (2004). What Makes Biology Unique? Considerations on the Autonomy of a Scientific Discipline. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Moreira, D. & López-García, P.T. (2009). Nat. Rev. Microbiol. 7(4), 306311. doi: 10.1038/nrmicro2108.Google Scholar
Miller, S.L. (1953). Science 117, 528529.CrossRefGoogle Scholar
Mushegian, A. (2008). Front. Biosci. 1(13), 46574666.CrossRefGoogle Scholar
Nasir, A. & Caetano-Anollés, G. (2015). Sci. Adv. 1(8), e1500527. doi: 10.1126/sciadv.1500527.CrossRefGoogle Scholar
Nasir, A., Kim, K.M. & Caetano-Anolles, G. (2012). BMC Evol. Biol. 24(12), 156. doi: 10.1186/1471-2148-12-156.CrossRefGoogle Scholar
Norris, V., Reusch, R.N., Igarashi, K. & Root-Bernstein, R. (2014). Biol. Direct. 4(10), 28. doi: 10.1186/s13062-014-0028-3.Google Scholar
Osawa, S. (1995). Evolution of the Genetic Code. Oxford University Press, Oxford.Google ScholarPubMed
Ouzounis, C.A., Kunin, V., Darzentas, N. & Goldovsky, L. (2006). Res. Microbiol. 157(1), 5768.CrossRefGoogle Scholar
Parker, E.T., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Callahan, M., Aubrey, A., Lazcano, A. & Bada, J.L. (2011). Proc. Natl. Acad. Sci. USA. 108(14), 55265531. doi: 10.1073/pnas.1019191108.CrossRefGoogle Scholar
Parker, E.T., Zhou, M., Burton, A.S., Glavin, D.P., Dworkin, J.P., Krishnamurthy, R., Fernández, F.M. & Bada, J.L. (2014). Angew. Chem. Int. Ed. Engl. 53(31), 81328136. doi: 10.1002/anie.201403683.CrossRefGoogle Scholar
Penny, D. & Poole, A. (1999). Curr. Opin. Genet. Dev. 9(6), 672677.CrossRefGoogle Scholar
Petrov, A.S., Bernier, C.R., Hsiao, C., Norris, A.M., Kovacs, N.A., Waterbury, C.C., Stepanov, V.G., Harvey, S.C., Fox, G.E., Wartell, R.M. et al. (2014). Proc. Natl. Acad. Sci. USA. 111(28), 1025110256. doi: 10.1073/pnas.1407205111.CrossRefGoogle Scholar
Root-Bernstein, R. (2012). Acc. Chem. Res. 45(12), 21692177. doi: 10.1021/ar200209k.CrossRefGoogle Scholar
Root-Bernstein, M. & Root-Bernstein, R. (2015). J. Theor. Biol. 21(367), 130158. doi: 10.1016/j.jtbi.2014.11.025.CrossRefGoogle Scholar
Root Bernstein, R.S. & Dillon, P.F. (1997). J. Theo. Biol. 188, 447479.CrossRefGoogle Scholar
Root-Bernstein, R.S. & Root-Bernstein, M.M. (2016). J. Theor. Biol. 397, 115127. doi: 10.1016/j.jtbi.2016.02.030.CrossRefGoogle Scholar
Santos, M.A., Moura, G., Massey, S.E. & Tuite, M.F. (2004). Trends Genet. 20(2), 95102.CrossRefGoogle Scholar
Shenhav, B., Oz, A. & Lancet, D. (2007). Philos. Trans. R. Soc. London B. Biol. Sci. 362(1486), 18131819.CrossRefGoogle Scholar
Tamura, K. (2011). J. Biosci. 36(5), 921928.CrossRefGoogle Scholar
Woese, C. (1998). Proc. Natl. Acad. Sci. USA. 95(12), 68546859.CrossRefGoogle Scholar
Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Proc. Natl. Acad. Sci. USA. 87(12), 45764579.CrossRefGoogle Scholar
Yarus, M. (2015). RNA 21(4), 769770. doi: 10.1261/rna.051086.115.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 55
Total number of PDF views: 222 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Buds of the tree: the highway to the last universal common ancestor
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Buds of the tree: the highway to the last universal common ancestor
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Buds of the tree: the highway to the last universal common ancestor
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *