Article contents
MORPHIC RINGS AS TRIVIAL EXTENSIONS
Published online by Cambridge University Press: 31 January 2005
Abstract
A ring $R$ is called left morphic if, for every $a\in R$, $R/Ra\cong {\bf l}(a)$ where ${\bf l}(a)$ denotes the left annihilator of $a$ in $R$. Right morphic rings are defined analogously. In this paper, we investigate when the trivial extension $R\propto M$ of a ring $R$ and a bimodule $M$ over $R$ is (left) morphic. Several new families of (left) morphic rings are identified through the construction of trivial extensions. For example, it is shown here that if $R$ is strongly regular or semisimple, then $R\propto R$ is morphic; for an integer $n>1$, ${\mathbb Z}_n\propto {\mathbb Z}_n$ is morphic if and only if $n$ is a product of distinct prime numbers; if $R$ is a principal ideal domain with classical quotient ring $Q$, then the trivial extension $R\propto {Q}/{R}$ is morphic; for a bimodule $M$ over $\mathbb Z$, ${\mathbb Z}\propto M$ is morphic if and only if $M\cong{\mathbb Q}/{\mathbb Z}$. Thus, ${\mathbb Z}\propto {\mathbb Q}/{\mathbb Z}$ is a morphic ring which is not clean. This example settled two questions both in the negative raised by Nicholson and Sánchez Campos, and by Nicholson, respectively.
Keywords
- Type
- Research Article
- Information
- Copyright
- 2005 Glasgow Mathematical Journal Trust
- 10
- Cited by