Skip to main content Accessibility help
×
Home

Groups without nearly abnormal subgroups

  • Silvana Franciosi (a1) and Francesco de Giovanni (a1)

Abstract

A subgroup M of an infinite group G is said to be nearly maximal if it is a maximal element of the set of all subgroups of G having infinite index; i.e. if the index |G:M| is infinite but every subgroup of G properly containing M has finite index in G. The near Frattini subgroup ψ(G) of an infinite group G can now be defined as the intersection of all nearly maximal subgroups of G, with the stipulation that ψ(G)=G if G has no nearly maximal subgroups. These concepts have been introduced by Riles [5]. It was later proved by Lennox and Robinson [4] that a finitely generated soluble-by-finite group G is infinite-by-nilpotent if and only if all its nearly maximal subgroups are normal. It follows that in the class of finitely generated soluble-by-finite groups the property of being finite-by-nilpotent is inherited from the near Frattini factor group G/ψ(G) to the group G itself. In the study of ordinary Frattini properties of infinite groups, some analogies exist between the behaviour of finitely generated soluble groups and soluble minimax residually finite groups (see for instance [6] and [7]). This fact could suggest that a result corresponding to that of Lennox and Robinson also holds for soluble residually finite minimax groups. Unfortunately in this case the property of being finite-by-nilpotent cannot be detected from the behaviour of nearly maximal subgroups, this phenomenon depending on the fact that infinite soluble residually finite minimax groups may be poor of such subgroups.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Groups without nearly abnormal subgroups
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Groups without nearly abnormal subgroups
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Groups without nearly abnormal subgroups
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed