Skip to main content Accessibility help
×
×
Home

DING-GRADED MODULES AND GORENSTEIN GR-FLAT MODULES

  • LIXIN MAO (a1)

Abstract

Let R be a graded ring. We introduce the concepts of Ding gr-injective and Ding gr-projective R-modules, which are the graded analogues of Ding injective and Ding projective modules. Several characterizations and properties of Ding gr-injective and Ding gr-projective modules are obtained. In addition, we investigate the relationships among Gorenstein gr-flat, Ding gr-injective and Ding gr-projective modules.

Copyright

References

Hide All
1. Asensio, M. J., Lopez Ramos, J. A. and Torrecillas, B., Gorenstein gr-injective and gr-projective modules, Comm. Algebra 26 (1998), 225240.
2. Asensio, M. J., Lopez Ramos, J. A. and Torrecillas, B., Gorenstein gr-flat modules, Comm. Algebra 26 (1998), 31953209.
3. Asensio, M. J., Lopez Ramos, J. A. and Torrecillas, B., FP-gr-injective modules and gr-FC rings, Algebra Number Theory (Marcel Dekker, Inc., New York, 1999), 111.
4. Asensio, M. J., Lopez Ramos, J. A. and Torrecillas, B., Covers and envelopes over gr-Gorenstein rings, J. Algebra 215 (1999), 437459.
5. Auslander, M. and Bridger, M., Stable module theory, Mem. Amer. Math. Soc., vol. 94 (American Mathematical Society, Providence, 1969).
6. Crivei, S., Prest, M., and Torrecillas, B., Covers in finitely accessible categories, Proc. Amer. Math. Soc. 138 (2010), 12131221.
7. Ding, N. Q., Li, Y. L. and Mao, L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), 323338.
8. Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189209.
9. Enochs, E. E. and Jenda, O. M. G., Gorenstein injective and Gorenstein projective modules, Math. Z. 220 (1995), 611633.
10. Enochs, E. E. and Jenda, O. M. G., Relative homological algebra (Walter de Gruyter, Berlin-New York, 2000).
11. Enochs, E. E., Jenda, O. M. G. and Torrecillas, B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), 19.
12. Enochs, E. E. and López-Ramos, J. A., Gorenstein flat modules (Nova Science Publishers, Inc., New York, 2001).
13. Enochs, E. E. and Oyonarte, L., Covers, envelopes and cotorsion theories (Nova Science Publishers, Inc., New York, 2002).
14. García Rozas, J. R., López-Ramos, J. A. and Torrecillas, B., On the existence of flat covers in R-gr, Comm. Algebra 29 (2001), 33413349.
15. Garcia Rozas, J. R. and Torrecillas, B., Preserving and reflecting covers by functors: Applications to graded modules, J. Pure Appl. Algebra 112 (1996), 91107.
16. Gillespie, J., Cotorsion pairs and degreewise homological model structures, Homology, Homotopy Appl. 10 (2008), 283304.
17. Gillespie, J., Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12 (2010), 6173.
18. Göbel, R. and Trlifaj, J., Approximations and endomorphism algebras of modules (Walter de Gruyter, Berlin-New York, 2006).
19. Hermann, M., Ikeda, S. and Orbanz, U., Equimultiplicity and blowing up (Springer-Verlag, New York-Berlin, 1988).
20. Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167193.
21. Malliavin, M. P., Sur les anneaux de groupes FP self-injectifs. C. R. Acad. Sc. Paris 273 (1971), 8891.
22. Mao, L. X. and Ding, N. Q., Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), 491506.
23. Nastasescu, C., Raianu, S. and Van Oystaeyen, F., Modules graded by G-sets, Math. Z. 203 (1990), 605627.
24. Nastasescu, C., Van Den Bergh, M. and Van Oystaeyen, F., Separable functors applied to graded rings, J. Algebra 123 (1989), 397413.
25. Nastasescu, C. and Van Oystaeyen, F., Graded ring theory (North-Holland Publishing Company, Amsterdam, New York, Oxford, 1982).
26. Rotman, J. J., An introduction to homological algebra (Academic Press, New York, 1979).
27. Stenström, B., Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323329.
28. Stenström, B., Rings of quotients (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
29. Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Philadelphia, 1991).
30. Yang, X. Y. and Liu, Z. K., FP-gr-injective modules, Math. J. Okayama Univ. 53 (2011), 83100.
31. Yang, G., Liu, Z. K. and Liang, L., Ding projective and ding injective modules, Algebra Colloq. 20 (2013), 601612.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed