Skip to main content Accessibility help
×
Home

COMPACT ELEMENTS AND OPERATORS OF QUANTUM GROUPS

  • MASSOUD AMINI (a1), MEHRDAD KALANTAR (a2), ALIREZA MEDGHALCHI (a3), AHMAD MOLLAKHALILI (a3) and MATTHIAS NEUFANG (a4)...

Abstract

A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.

Copyright

References

Hide All
1. Baaj, S., Skandalis, G. and Vaes, S., Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys. 235 (2003), 139167.
2. Bedos, E. and Tuset, L., Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), 865884.
3. Berglund, J. F., Junghenn, H. D. and Milnes, P., Analysis on semigroups. Function spaces, compactifications, representations, Canadian Mathematical Society Series of Monographs and Advanced Texts (John Wiley & Sons, Inc., New York, 1989).
4. Brešar, M. and Turovskii, Y. V., Compactness conditions for elementary operators, Studia Math. 178 (1) (2007), 118.
5. Daws, M., Remarks on the quantum Bohr compactification, Illinois J. Math., 57 (4) (2013), 11311171.
6. Daws, M., Fima, P., Skalski, A. and White, S., The Haagerup property for locally compact quantum groups, J. Reine Angew. Math., 711 (2016), 189229.
7. Diestel, J. and Uhl, J., Vector measures (American Mathematical Society, Providence, RI, 1977).
8. Effros, E. and Ruan, Z.-J., Discrete quantum groups I, the Haar measure, Internat. J. Math. 5 (1994), 681723.
9. Erdos, J. A., On certain elements of C*-algebras, Illinois J. Math. 15 (1971), 682693.
10. Ghahramani, F. and Lau, A. T., Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995), 170191.
11. Hu, Z., Neufang, M. and Ruan, Z.-J., Convolution of trace class operators over locally compact quantum groups, Canad. J. Math. 65 (5) (2013), 10431072.
12. Hu, Z., Neufang, M. and Ruan, Z.-J., Module maps over locally compact quantum groups, Studia Math. 211 (2) (2012), 111145.
13. Kalantar, M., Compact operators in regular LCQ groups, Canad. Math. Bull. 57 (3) (2014), 546550.
14. Kalantar, M., Towards harmonic analysis on locally compact quantum groups from groups to quantum groups – and back, PhD Thesis (Carleton University, 2011).
15. Kalantar, M. and Neufang, M., From quantum groups to groups, Canad. J. Math. 65 (5) (2013), 10731094.
16. Kustermans, J. and Vaes, S., Locally compact quantum groups, Ann. Sci. Èole Norm. Sup. 33 (2000), 837934.
17. Kustermans, J. and Vaes, S., Locally compact quantum groups in the Von Neumann algebraic setting, Math. Scand. 92 (2003), 6892.
18. Lau, A. T.-M. and Losert, V., On the second conjugate algebra of L 1(G) of a locally compact group, J. London Math. Soc. 37 (2) (1988), 464470.
19. Losert, V., Weakly compact multipliers on group algebras, J. Funct. Anal. 213 (2004), 466472.
20. Murphy, G.J., C*-algebras and operator theory (Academic Press, Inc., San Diego, CA, 1990).
21. Neufang, M., Solution to Farhadi–Ghahramani's multiplier problem, Proc. Amer. Math. Soc. 138 (2) (2010), 553555.
22. Palmer, T. W., Banach algebras and general theory of *-algebras, vol. 1 (Cambridge University Press, Cambridge, 1994).
23. Runde, V., Characterizations of compact and discrete quantum groups through second duals, J. Operator Theory 60 (2008), 415428.
24. Runde, V., Completely almost periodic functionals, Arch. Math. (Basel) 97 (2011), 325331.
25. Runde, V., Uniform continuity over locally compact quantum groups, J. London Math. Soc. 80 (2009), 5571.
26. Sakai, S., Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659664.
27. Sołtan, P.M., Quantum Bohr compactification, Illinois J. Math. 49 (2005), 12451270.
28. Spinu, E., Operator ideals on ordered Banach spaces, PhD Thesis (University of Alberta, 2013).
29. Takesaki, M., Theory of operator algebras, vol. 1 (Springer-Verlag, New York-Heidelberg, 1979).
30. Taylor, K. F., Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (2) (1983), 183190.
31. Woronowicz, S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (4) (1987), 613665.
32. Ylinen, K., A note on the compact elements of C*-algebras, Proc. Amer. Math. Soc. 35 (1972), 305306.
33. Ylinen, K., Weakly completely continuous elements of C*-algebras, Proc. Amer. Math. Soc. 52 (1975), 323326.

MSC classification

COMPACT ELEMENTS AND OPERATORS OF QUANTUM GROUPS

  • MASSOUD AMINI (a1), MEHRDAD KALANTAR (a2), ALIREZA MEDGHALCHI (a3), AHMAD MOLLAKHALILI (a3) and MATTHIAS NEUFANG (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed