Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-wmdqp Total loading time: 0.278 Render date: 2021-04-23T02:42:46.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

BIHARMONIC LAGRANGIAN SURFACES OF CONSTANT MEAN CURVATURE IN COMPLEX SPACE FORMS

Published online by Cambridge University Press:  01 September 2007

TORU SASAHARA
Affiliation:
Department of Mathematics, Oita National College of Technology, 1666 Maki, Oita 870-0150, Japan e-mail: t-sasa@oita-ct.ac.jp
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Biharmonic Lagrangian surfaces of constant mean curvature in complex space forms are classified. A further important point is that new examples of marginally trapped biharmonic Lagrangian surfaces in an indefinite complex Euclidean plane are obtained. This fact suggests that Chen and Ishikawa's classification of marginally trapped biharmonic surfaces [6] is not complete.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

References

1.Barros, M. and Romero, A., Indefinite Kaehler manifolds, Math. Ann. 261 (1982) 5562.CrossRefGoogle Scholar
2.Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S 3, Internat. J. Math. 12 (2001), 867876.CrossRefGoogle Scholar
3.Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds in spheres, Israel J. Math. 130 (2002), 109123.CrossRefGoogle Scholar
4.Chen, B.-Y., Null 2-type surfaces in Euclidean space, in Algebra, analysis and geometry (Taipei, 1988), (World Sci. Publ., Teaneck, NJ, 1989), 118.Google Scholar
5.Chen, B.-Y., Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math. 5 (2001) 681723.CrossRefGoogle Scholar
6.Chen, B.-Y. and Ishikawa, S., Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998) 167185.CrossRefGoogle Scholar
7.Chen, B.-Y. and Vrancken, L., Lagrangian minimal isometric immersion of a Lorentzian real space form into a Lorentzian complex space form, Tohoku Math. J. 54 (2002) 121143.CrossRefGoogle Scholar
8.Chen, B.-Y. and Dillen, F., Classification of marginally trapped Lagrangian surfaces in Lorentzian complex space forms, J. Math. Phys., to appear.Google Scholar
9.Eells, J. and Sampson, J. H., Variational theory in fiber bundles, in Proc. U.S.-Japan seminar in differential geometry (Kyoto, 1965), 2233.Google Scholar
10.Inoguchi, J., Submanifolds with harmonic mean curvature vector field in contact 3-manifolds, Colloq. Math. 100 (2004), 163179.CrossRefGoogle Scholar
11.Jiang, G. Y., 2-harmonic maps and their first and second variational formulas. (Chinese), Chinese Ann. Math. A 7 (1986), 389402.Google Scholar
12.Kriele, M. and Vrancken, L., Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature, Arch. Math. (Basel) 72 (1999), 223232.CrossRefGoogle Scholar
13.Montaldo, S. and Oniciuc, C.A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 122. Available at http://inmabb.criba.edu.ar/revuma/Google Scholar
14.Reckziegel, H., Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion, in Global differential geometry and global analysis (Berlin, 1984), 264279, Lecture Notes in Math., 1156, (Springer-Verlag, 1985).CrossRefGoogle Scholar
15.Sasahara, T., Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285303.Google Scholar
16.Sasahara, T., Quasi-minimal Lagrangian surfaces whose mean curvature vectors are eigenvectors. Demonstratio Math. 38 (2005), 185196.Google Scholar
17.Vrancken, L., Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space forms, Proc. Amer. Math. Soc. 130 (2002), 14591466.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 162 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

BIHARMONIC LAGRANGIAN SURFACES OF CONSTANT MEAN CURVATURE IN COMPLEX SPACE FORMS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

BIHARMONIC LAGRANGIAN SURFACES OF CONSTANT MEAN CURVATURE IN COMPLEX SPACE FORMS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

BIHARMONIC LAGRANGIAN SURFACES OF CONSTANT MEAN CURVATURE IN COMPLEX SPACE FORMS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *