Skip to main content Accessibility help
×
Home

ABELIAN IDEALS IN A COMPLEX SIMPLE LIE ALGEBRA

  • PATRICK J. BROWNE (a1)

Abstract

In this note, we give a new simple construction of all maximal abelian ideals in a Borel subalgebra of a complex simple Lie algebra. We also derive formulas for dimensions of certain maximal abelian ideals in terms of the theory of Borel de Siebenthal.

Copyright

References

Hide All
1. Borel, A. and de Siebenthal, J., Les sous-groupes fermes de rang maximum de Lie clos, Comment. Math. Helv 23 (1949), 200221.
2. Bourbaki, N., Group et Algebres de Lie. Chapitres 4, 5 et 6 (Masson, Paris, 1981).
3. Burns, J. M. and Clancy, M. J., Weight sum formula in Lie algebra representations, J. Algebra 257 (1) (2002), 112.
4. Cellini, P. and Papi, P., Abelian ideals of Borel subalgebras and affine Weyl groups, Adv. Math. 187 (2) (2004), 320361.
5. Chari, V., Dolbin, R. and Ridenour, T., Ideals in parabolic subalgebras of simple Lie algebras, Contemp. Math., Amer. Math. Soc., Providence, RI, 490 (2009), 4760.
6. Humphreys, J. Introduction to Lie algebras and representation theory (Springer, New York, 1997).
7. Kostant, B., Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology, 3 (2) (1965), 147159.
8. Kostant, B., The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices 1 (5) (1998), 225252.
9. Panyushev, D. and Röhrle, G. C., Spherical orbits and abelian ideals, Adv. Math. 159 (2) (2001), 229246.
10. Röhrle, G., On normal abelian subgroups in parabolic groups, Ann. de l'institut Fourier 5 (5) (1998), 14551482.
11. Suter, R., Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Inventiones Math. 156 (1) (2004), 175221.
12. Tamaru, H., Homogeneous Einstein manifolds attached to graded Lie algebras, Mathematische Zeitschrift 259 (1) (2008), 171186.
13. Wolf, J. A., Spaces of constant curvature - fifth edition., (Publish or perish, Wilmington, DE, 1984).

MSC classification

ABELIAN IDEALS IN A COMPLEX SIMPLE LIE ALGEBRA

  • PATRICK J. BROWNE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed