Skip to main content Accessibility help
×
Home

Variations in δ13C values of sedimentary organic matter since late Miocene time in the Indus Fan (IODP Site 1457) of the eastern Arabian Sea

  • Boo-Keun Khim (a1), Jongmin Lee (a1), Sanbeom Ha (a1), Jingu Park (a1), Dhananjai K. Pandey (a2), Peter D. Clift (a3), Denise K. Kulhanek (a4), Stephan Steinke (a5), Elizabeth M. Griffith (a6), Kenta Suzuki (a7), Zhaokai Xu (a8) and IODP Expedition 355 Scientists (a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)...

Abstract

A 1108.6 m long core was recovered at Site U1457 located on the Indus Fan in the Laxmi Basin of the eastern Arabian Sea during IODP Expedition 355. Shipboard examinations defined five lithologic units (I to V) of the lower Paleocene to Holocene sedimentary sequence. In this study, δ13C values of sedimentary organic matter (SOM) confirm the differentiation of the lithologic units and further divide units III and IV into two subunits (1 and 2). Based on the underlying assumption that the SOM is decided primarily by a mixture of marine and terrestrial origins, δ13CSOM values at Site U1457 provide information on the terrestrial catchment conditions since late Miocene time. Low δ13CSOM values from late Miocene to late Pleistocene times are similar (c. −22.0 ‰) for the most part, reflecting a consistent contribution of terrestrial organic matter from the catchment areas characterized by dominant C3 land plants. Significantly lower δ13CSOM values (c. −24.0 ‰) in Unit III-2 (∼8 to ∼7 Ma) might be due to a greater input of C3 terrestrial organic matter. The increase in δ13CSOM values at ∼7 Ma and the appearance of high δ13CSOM values (c. −18.0 ‰) within Unit III-1 (∼7 to ∼2 Ma) indicate that C4 biomass overwhelmed the terrestrial catchment environment as a result of enhanced terrestrial aridity in the Himalayan foreland. The three-end-member simple mixing model, estimating the relative contributions of SOM from terrestrial C3 and C4 plants and marine phytoplankton, supports our interpretation of the distribution of C3 and C4 land plants in the terrestrial catchment environment.

Copyright

Corresponding author

Footnotes

Hide All
*

A comprehensive list of consortium members appears at the end of the paper.

Footnotes

References

Hide All
Agnihotri, R, Bhattacharya, SK, Sarin, MM and Somayajulu, BLK (2003) Changes in surface productivity and subsurface denitrification during the Holocene: a multiproxy study from the eastern Arabian Sea. The Holocene 13, 701–13.
An, Z, Kutzbach, JE, Prell, WL and Porter, SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62–6.
Azharuddin, S, Govil, P, Singh, AD, Mishra, R, Agrawal, S, Tiwari, AK and Kumar, K (2017) Monsoon-influenced variations in productivity and lithogenic flux along offshore Saurashtra, NE Arabian Sea during the Holocene and Younger Dryas: a multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology 483, 136–46.
Banakar, VK, Oba, T, Chodankar, AR, Kuramoto, T, Yamamoto, M and Minagawa, M (2005) Monsoon related changes in sea surface productivity and water column denitrification in the eastern Arabian Sea during the last glacial cycle. Marine Geology 219, 99108.
Boos, WR and Kuang, Z (2010) Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports 3, 1192, doi: 10.1028/srep01192.
Bourget, J, Zaragosi, S, Rodriguez, M, Fournier, M, Garlan, T and Chamot-Rooke, N (2013) Late Quaternary megaturbidites of the Indus Fan: origin and stratigraphic significance. Marine Geology 336, 1023.
Burbank, DW, Derry, LA and France-Lanord, C (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature 364, 4850.
Calvert, SE, Pedersen, TF, Naidu, PD and von Stackelberg, U (1995) On the organic carbon maximum on the continental slope of the eastern Arabian Sea. Journal of Marine Research 53, 269–96.
Calvès, G, Huuse, M, Clift, PD and Brusset, S (2015) Giant fossil mass wasting off the coast of West India: the Nataraja submarine slide. Earth and Planetary Science Letters 432, 265–72.
Cerling, TE, Harris, JM, MacFadden, BJ, Leakey, MG, Quade, J, Eisenmann, V and Ehleringer, JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–58.
Clift, P, Gaedicke, C, Edwards, R, Lee, JI Hildebrand, P Amjad, S White, RS and Schlüter, H-U (2002) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Marine Geophysical Researches 23, 223–45.
Clift, PD, Shimizu, N, Layne, G, Blusztajn, J, Gaedicke, C, Schlüter, H-U, Clark, M and Amjad, S (2001) Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geological Society of America Bulletin 113, 1039–51.
Collatz, GJ, Berry, JA and Clark, JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–54.
Cowie, G, Mowbray, S, Kurian, S, Sarkar, A, White, C, Anderson, A, Bergnaud, B, Johnstone, G, Brear, S, Woulds, C, Naqvi, SWA and Kitazato, H (2014) Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope. Biogeosciences 11, 6683–96.
Edwards, GE and Walker, DA (eds.) (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis. Oxford: Blackwell Scientific, 552 pp.
Fontugne, MR and Duplessy, JC (1986) Variations of the monsoon regime during the Upper Quaternary: evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores. Palaeogeography, Palaeoclimatology, Palaeoecology 56, 6988.
France-Lanord, C and Derry, LA (1994) δ13C of organic carbon in the Bengal Fan: source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochemical et Cosmochimica Acta 58, 4809–14.
Fry, B and Sherr, EB (1984) δ13C measurements as indicators of carbon flow in marine and flow ecosystems. Contributions in Marine Science 27, 1347.
Herbert, TD, Lawrence, KT, Tzanova, A, Peterson, LC, Caballero-Gill, R and Keely, CS (2016) Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience 9, 843–47.
Huang, Y, Clemens, SC, Liu, W, Wang, Y and Prell, WL (2007) Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35, 531–4.
Krishna, MS, Naidu, SA, Subbaiah, CHV, Sarma, VVSS and Reddy, RPC (2013) Distribution and sources of organic matter in surface sediments of the eastern continental margin of India. Journal of Geophysical Research: Biogeoscience 118, 1489–94.
Kroon, D, Steens, T and Troelstra, SR (1991) Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 117 (eds Prell, WL, Niitsuma, N, Emeis, K-C, Al-Sulaiman, ZK, Al-Tobbah, ANK, Anderson, DM, Barnes, RO, Bilak, RA, Bloemendal, J, Bray, CJ, Busch, WH, Clemens, SC, de Menocal, P, Debrabant, P, Hayashida, A, Hermelin, JOR, Jarrad, RD, Krissek, LA, Kroon, D, Murray, DW, Nigrini, CA, Pedersen, TF, Ricken, W, Shimmield, GB, Spaulding, SA, Takayama, T, ten Haven, HL and Weedon, GP), pp. 257–63. College Station, Texas.
Liddy, H, Feakins, S, Clift, PD, Tauxe, L, Kulhanek, DK, Scardia, G, Warny, S, Bendle, JA, Galy, V, Zhou, P and Expedition 355 Science Party (2016) Late Miocene hydrological change in the Indus River catchment. American Geophysical Union, Fall Meeting 2016, Abstract, PP42A-01.
Maya, MV, Soares, MA, Agnihotri, R, Pratihary, AK, Karapurkar, S, Naik, H and Naqvi, SWA (2011) Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary. Environmental Monitoring Assessment 175, 501–17.
Mayer, LM (1993) Organic matter at the sediment-water interface. In Organic Geochemistry: Principles and Applications (eds Engel, MH and Macko, SA), pp. 171–84. New York: Springer.
Meyers, PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289302.
Meyers, PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213–50.
Milliman, JD and Syvitski, JP (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology 100, 525–44.
Müller, PJ (1977) C/N ratios in Pacific deep sea sediments: effect of inorganic ammonium and organic nitrogen compounds absorbed by clays. Geochimica et Cosmochimica Acta 41, 765–76.
Muzuka, ANN, Macko, SA and Pedersen, TF (1991) Stable carbon and nitrogen isotope compositions of organic matter from Sites 724 and 725, Oman Margin. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 117 (eds Prell, WL, Niitsuma, N, Emeis, K-C, Al-Sulaiman, ZK, Al-Tobbah, ANK, Anderson, DM, Barnes, RO, Bilak, RA, Bloemendal, J, Bray, CJ, Busch, WH, Clemens, SC, de Menocal, P, Debrabant, P, Hayashida, A, Hermelin, JOR, Jarrad, RD, Krissek, LA, Kroon, D, Murray, DW, Nigrini, CA, Pedersen, TF, Ricken, W, Shimmield, GB, Spaulding, SA, Takayama, T, ten Haven, HL and Weedon, GP), pp. 571–86. College Station, Texas.
Nagoji, SS and Tiwari, M (2017) Organic carbon preservation in southeastern Arabian Sea sediments since mid-Holocene: implications to South Asian Summer Monsoon variability. Geochemistry, Geophysics, Geosystems 18, 3438–51.
Naik, SS, Godad, SP, Naidu, PD, Tiwari, M and Paropkari, AL (2014) Early- to late-Holocene contrast in productivity, OMZ intensity and calcite dissolution in the eastern Arabian Sea. The Holocene 24, 749–55.
Naik, DK, Saraswat, R, Lea, DW, Kurtarkar, SR and Mackensen, A (2017) Last glacial–interglacial productivity and associated changes in the eastern Arabian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 483, 147–56.
O’Leary, MH (1988) Carbon isotopes in photosynthesis, Bioscience 38, 328–36.
Pandey, DK, Clift, PD, Kulhanek, DK and the Expedition 355 Scientists (2016) Arabian Sea Monsoon. Proceedings of the International Ocean Discovery Program, vol. 355. College Station, Texas, 61 pp.
Pattan, JN, Masuzawa, T, Naidu, PD, Parthiban, G and Yamamoto, M (2003) Productivity fluctuations in the southeastern Arabian Sea during the last 140 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 575–90.
Pearson, PN and Palmer, MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–9.
Pedersen, TF, Shimmield, GB and Price, NB (1992) Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin. Geochemical et Cosmochimica Acta 56, 545–51.
Phillips, DL and Gregg, JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–9.
Phillips, DL and Gregg, JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–9.
Phillips, DL and Gregg, JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520–7.
Prins, MA, Postma, G, Cleveringa, J, Cramp, A and Kenyon, NH (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan. Marine Geology 169, 327–49.
Quade, J, Cerling, TE and Bowman, JR, (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–6.
Reichart, GJ, Den Dulk, M, Visser, HJ, Van Der Weijden, CH and Zachariasse, WJ (1997) A 225 kyr record of dust supply, paleoproductivity and the Oxygen Minimum Zone from the Murray Ridge (Northern Arabian Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 134, 149–69.
Sarnthein, M, Winn, K, Duplessy, JC and Fontugne, M (1988) Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3, 361–99.
Schoepfer, SD, Shen, J, Wei, H, Tyson, RV, Ingall, E and Algeo, TJ (2015) Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews 149, 2352.
Schott, FA and McCreary, JP (2001) The monsoon circulation of the Indian Ocean. Progress in Oceanography 51, 1123.
Schulte, S, Rostek, F, Bard, E, Rullkötter, J and Marchal, O (1999) Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth and Planetary Science Letters 173, 205–21.
Smallwood, BJ and Wolff, GA (2000) Molecular characterisation of organic matter in sediments underlying the oxygen minimum zone at the Oman Margin, Arabian Sea. Deep-Sea Research II 47, 353–75.
Smith, BN and Epstein, S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380–4.
Stein, R (1991) Accumulation of Organic Carbon in Marine Sediments. Berlin: Springer-Verlag, 217 pp.
Stevenson, FJ and Cheng, C-N (1972) Organic geochemistry of the Argentine Basin sediments – carbon–nitrogen relationships and Quaternary correlations. Geochimica et Cosmochimica Acta 36, 653–71.
Thamban, M, Rao, VP, Schneider, R and Grootes, PM (2001) Glacial to Holocene fluctuations in hydrography and productivity along the southwestern continental margin of India. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 113–27.
Tripathi, S, Tiwari, M, Lee, J, Khim, BK and IODP Expedition 355 Scientists (2017) First evidence of denitrification vis-à-vis monsoon in the Arabian Sea since Late Miocene. Scientific Reports 7, 43056, doi: 10.1038/srep43056.
van der Weijden, CH, Reichart, GJ and Visser, HJ (1998) Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep-Sea Research I 46, 807–30.
Wyrtki, K (1971) Oceanographic Atlas of the International Indian Ocean Expedition. Washington, DC: National Science Foundation.
Zachos, J, Pagani, M, Sloan, L, Thomas, E, and Billups, K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–93.
Zhuang, G, Pagani, M and Zhang, YG (2017) Monsoon upwelling in the western Arabian Sea since the middle Miocene. Geology 45, 655–8.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Khim et al. supplementary material
Khim et al. supplementary material 1

 Unknown (41 KB)
41 KB
UNKNOWN
Supplementary materials

Khim et al. supplementary material
Khim et al. supplementary material 2

 Unknown (138 KB)
138 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed