Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T08:44:47.890Z Has data issue: false hasContentIssue false

Cenomanian and lower Turonian relative chronology and palaeoenvironmental framework of the Nouader site (Aures Basin, Northeastern Algeria)

Published online by Cambridge University Press:  11 April 2019

Aida Bensekhria*
Affiliation:
State Key Laboratory of Natural Hazards and Regional Planning, University of Batna 2, Batna, Algeria Department of Geological Sciences, Faculty of Earth Sciences, Geography and Regional Planning, University of Mentouri Brothers – Constantine 1, Constantine, Algeria
Ramdane Marmi
Affiliation:
State Key Laboratory of Geology and Environment, University of Mentouri Brothers – Constantine 1, Algeria
Abdelouahab Yahiaoui
Affiliation:
State Key Laboratory of Natural Hazards and Regional Planning, University of Batna 2, Batna, Algeria

Abstract

The lower–upper Cenomanian boundaries interval of the Nouader site in the Aures Basin (NE Algeria) has been studied for the first time using the association of two particularly effective taxonomic groups, one macrofossil (ammonites), and the other microfossil (foraminifera). The study section is divided into two formations (Fahdene and Bahloul) and one member (Annaba). Biostratigraphicaly, six ammonite biozones and five foraminiferan biozones were identified and calibrated. The ammonite fauna allows recognition of the lower Cenomanian Mantelliceras mantelli Zone, the upper lower Cenomanian Mantelliceras dixoni Zone, the succeeding lower middle Cenomanian Cunningtoniceras inerme Zone, the Acanthoceras rhotomagense Zone and its subzones of Turrilites costatus and Turrilites acutus, followed by the upper middle Cenomanian Acanthoceras amphibolum Zone, the lower upper Cenomanian Eucalycoceras pentagonum Zone and finally the lower Turonian Pseudaspidoceras flexuosum Zone. The foraminiferan biozones are respectively: Thalmanninella brotzeni Zone, Thalmanninella reicheli Zone, Rotalipora cushmani Zone, Whiteinella archaeocretacea Zone and Helvetoglobotruncana helvetica Zone. Among 14 ammonite zones in the Tethyan domain versus 11 in the Boreal domain, seven are common to both domains. For the planktonic foraminifera the Tethyan domain has five zones, the Boreal domain also has five, with five in common. The succession of index species occurs in the same order in both Tethyan (NE Algeria and Central Tunisia) and Boreal realms (East and NW Europe). Furthermore, the supposed depositional setting is interpreted as a calm and relatively deep environment which can be located around the middle to the external platform.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amédro, F (1986) Biostratigraphie des craies cénomaniennes du Boulonnais par les Ammonites. Annales de la Société Géologique du Nord 105, 159–67.Google Scholar
Amédro, F (1992) L’Albien du Bassin anglo parisien: Ammonites, zonation phylétique, séquence. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 16, 187233.Google Scholar
Amédro, F (1993) La lithostratigraphie et les biofaciès: des outils de corrélations dans les craies cénomaniennes du détroit du Pas de Calais. Annales de Société Géologique du Nord 2, 7380.Google Scholar
Amédro, F (2002) Plaidoyer pour un étage Vraconnien entre l’Albien sensu stricto et le Cénomanien (Système Crétacé). Académie Royale de Belgique, Mémoire, Bruxelles, (Classes des Sciences) 4, 128 pp., 9 pls.Google Scholar
Amédro, F (2008) Support for a Vraconnian stage between the Albian sensu stricto and the Cenomanian (Cretaceous System). Carnets de Géologie 8, 83.Google Scholar
Amédro, F, Accarie, H and Robaszynski, F (2005) Position de la limite Cénomanien-Turonien dans la formation Bahloul de Tunisie central: apports intégrés des ammonites et isotopes du carbone (δ13C). Eclogae Geologicae Helvetiae 98, 151–67.CrossRefGoogle Scholar
Amédro, F and Robaszynski, F (1999) Les craies cénomaniennes du Boulonnais. Comparaison avec l’Aube (France) et le Kent (Royaume-Uni). Géologie de France 2, 3353.Google Scholar
Amédro, F and Robaszynski, F (2001) Les craies turoniennes du Boulonnais (France) au regard de la stratigraphie événementielle. Comparaison avec le Kent (UK) et la Normandie. Bulletin de la Société Géologique de Normandie et des Amis du Muséum du Havre 87, 3149.Google Scholar
Amédro, F and Robaszynski, F (2008) Zonation by ammonites and foraminifers of the Vraconnian-Turonian interval: a comparison of the Boreal and Tethyan domains (NW Europe/Central Tunisia). Carnets de Géologie 2, 15.Google Scholar
Atabekian, AA (1985) Turrilitids of the late Albian and Cenomanian of the southern part of the USSR. Trudy Mezhvedomstvennogo Stratigrafii SSSR 14, 1–112. [in Russian]Google Scholar
Baudin, F, Moullade, M and Tronchetti, G (2008) Characterization of the organic matter of upper Bedoulian and lower Gargasian strata in the historical stratotypes (Apt and Cassis-la-Bédoule areas, SE France). Carnets de Géologie, Brest, Letter 2008/01 (CG2008_L01), 19.Google Scholar
Benyoucef, M, Meister, C, Bensalah, M and Malti, F (2012) La plateforme pré-africaine (Cénomanien supérieur-Turonien inferieur) dans la région de Bechar (Algérie): Stratigraphie, paléoenvironnement et signification paléobiogéographique. Revue de Paléobiologie 31, 205–18.Google Scholar
Benyoucef, M, Meister, C, Mebarki, K, Läng, Ė, Adaci, M, Cavin, L, Malti, FZ, Zaoui, D, Cherif, A and Bensalah, M (2016) Evolution lithostratigraphique paléoenvironnementale et séquentielle du Cénomanien-Turonien inférieur dans la région de Guir (Ouest algérien). Carnets de Géologie 16, 217–96.Google Scholar
Bertraneu, J (1955) Contribution à l’étude géologique des Monts du Hodna. (1) Le massif du Bou Taleb. Bulletin du Service Géologique de l’Algérie 4, 189.Google Scholar
Bireklund, T, Hancock, JM, Hart, MB, Rawson, PF, Remane, J, Robaszynski, F, Schmid, F and Surlyk, F (1984) Cretaceous stage boundary proposals. Bulletin of the Geological Society 33, 320.Google Scholar
Brongniart, A (1822) Sur quelques terrains de Craie hors du Bassin de Paris. In Description géologique des environs de Paris (eds. Cuvier, G and Brongniart, A), 3rd edn, pp. 80101. Paris: Dufour et D’Ocagne.Google Scholar
Burollet, PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Thèse Sc. Annales des mines et de la géologie 18, 350 pp.Google Scholar
Burollet, PF, Dumestre, A, Keppel, D and Salvador, A (1952–4) Unités stratigraphiques en Tunisie centrale. Comptes Rendus de XIXe Congrès Géologique International, Alger, fasc. 21, 243–54.Google Scholar
Caron, M (1985) Cretaceous planktonic foraminifera. In Plankton Stratigraphy (eds Bolli, HM, Saunders, JB and Perch-Nielsen, K), pp. 1186. Cambridge: Cambridge University Press.Google Scholar
Caron, M, Dall’agnolo, S, Accarie, H, Barrera, E, Kauffman, EG, Amedro, F and Robaszynski, F (2006) High-resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and Wadi Bahloul (Tunisia): stable isotopes and bioevents correlation. Géobios 39, 171200.CrossRefGoogle Scholar
Chikhi-Aouimeur, F (2010) L’Algérie à travers son patrimoine paléontologique: les rudistes. Alger: BAOSEM, 270 pp.Google Scholar
Christensen, WK (1990) Actinocamax primus Arkhangelsky (Belemnitellidae; Upper Cretaceous). Biometry, comparison and biostratigraphy. Paläontologische Zeitschrift 64, 7590.CrossRefGoogle Scholar
Clavel, B (1986) Précisions stratigraphiques sur le Crétacé inferieur basal du Jura méridional. Eclogae Geologieae Helvetiae 79, 319–41.Google Scholar
Dubourdieu, G (1956) Etude géologique de la région de l’Ouenza (confins Algéro Tunisiens). Algiers: Publications du Service de la Carte Géologique de l’Algérie 10, 659 pp.Google Scholar
Dubourdieu, G and Sigal, J (1949) Notes stratigraphiques et paléontologiques sur la région de Dj. Ouenza (Algérie), (Aptien, Albien, cénomanien). Bulletin de la Société Géologique de France 5, 205–21.Google Scholar
Ellis, NV, Bowen, DQ, Campbell, S, Knill, JL, McKirdy, AP, Prosser, CD, Vincent, MA and Wilson, RCL (2007) British Upper Cretaceous Stratigraphy Chapter 5. Northern Province, England: Site: Hunstanton Cliffs (GCR ID: 220). Contents of an Introduction to the Geological Conservation Review 23, 10. Peterborough: Joint Nature Conservation Committee.Google Scholar
Emberger, J (1960) Esquisse géologique de la partie orientale des Monts des Oulad Nail, Atlas Saharien. Publications du Service de la Carte Géologique de l’Algérie 27, 400 pp.Google Scholar
Gale, AS (1995) Cyclostratigraphy and correlation of the Cenomanian Stage in Western Europe. In Orbiting Forcing Timescales and Cyclostratigraphy (eds MR House and AS Gale), pp. 177–97. Geological Society of London, Special Publication no. 85.Google Scholar
Gale, AS, Bown, P, Caron, M, Crampton, J, Crowhurst, SJ, Kennedy, WJ, Petrizzo, MR andWray, DS (2011) The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: an integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research 37, 59130.CrossRefGoogle Scholar
Gale, AS, Kennedy, WC, Voigt, S and Walaszczyk, I (2005) Stratigraphy of the upper Cenomanian–lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research 26, 460–87.Google Scholar
Gradstein, FM, Ogg, JG, Smith, AG, Bleeker, W and Lourens, LJ (2004) A new geologic time scale, with special reference to the Precambrian and Neogene. Episodes 27, 83100.CrossRefGoogle Scholar
Guiraud, R (1974) A la recherche du rhegmatisme de l’Algérie du Nord et des régions voisines. Annales Scientifiques de l’Université de Besançon 3, 135–53.Google Scholar
Guiraud, R (1975) L’évolution post-triasique de l’avant-pays de la chaîne alpine en Algérie, d’après l’étude du bassin du Hodna et des régions voisines. Geological Survey of Algeria 3, 259 pp.Google Scholar
Hancock, JM (1991) Ammonite scales for the Cretaceous system. Cretaceous Research 12, 259–91.CrossRefGoogle Scholar
Hancock, JM (2003) Lower sea levels in the Middle Cenomanian. Carnets de Géologie L02, 16.Google Scholar
Hart, MB and Bailey, HW (1980) The recognition of mid Cretaceous sea-level changes by means of foraminifera. Cretaceous Research 1, 289–97.CrossRefGoogle Scholar
Herkat, M and Guiraud, R (2006) The relationships between tectonics and sedimentation in the Late Cretaceous series of the eastern Atlas Domain (Algeria). Journal of African Earth Sciences 46, 346–70.CrossRefGoogle Scholar
Kaplan, U, Kennedy, WJ, Lehmann, J and Marcinowski, R (1998) Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geologie und Paläontologie in Westfalen 51, 1–236.Google Scholar
Keller, G and Pardo, A (2004) Age and palaeoenvironment of the Cenomanian-Turonian global stratotype section and point at Pueblo Colorado. Marine Micropaleontology 51, 95128.CrossRefGoogle Scholar
Kennedy, WJ (1984) Ammonite faunas and the standard zones of the Cenomanian to Maastrichtian stages in their type areas, with some proposals for the definition of the stage of boundaries by ammonites. Bulletin of the Geological Society of Denmark 33, 147–61.Google Scholar
Kennedy, WJ (1994) Cenomanian ammonites from Cassis, Bouches-du-Rhône, France. Paleopelagos 1, 209–54.Google Scholar
Kennedy, WJ, Amédro, F, Robaszynski, F and Jagt, JWM (2011) Ammonite faunas from condensed Cenomanian-Turonian sections (‘Tourtias’) in southern Belgium and northern France. Netherlands Journal of Geoscience 90, 209–23.CrossRefGoogle Scholar
Kennedy, WJ and Bilotte, M (2014) Cenomanian ammonites from Santander (Cantabria) and Sopeira (Aragón, south-central Pyrénées), northern Spain. Treballs del Museu de Geologia de Barcelona 20, 2132.CrossRefGoogle Scholar
Kennedy, WJ and Cobban, WA (1990) Cenomanian Ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. Palaeontology 33, 75154.Google Scholar
Kennedy, WJ, Cobban, WA, Hancock, JM and Gale, AS (2005) Upper Albian and Cenomanian ammonites from the Main Street Limestone, Grayson Marl and Del Rio Clay in northeast Texas. Cretaceous Research 26, 349428.CrossRefGoogle Scholar
Kennedy, WJ and Gale, AS (2015) Upper Albian and Cenomanian ammonites from Djebel Mrhila, Central Tunisia. Révue de Paléobiologie 34, 236361.Google Scholar
Kennedy, WJ and Gale, AS (2017) Trans-Tethyan correlation of the Lower–Middle Cenomanian boundary interval; southern England (Southerham, near Lewes, Sussex) and Douar el Khiana, northeastern Algeria. Acta Geologica Polonica 67, 75108.CrossRefGoogle Scholar
Kennedy, WJ and Juignet, P (1993) A revision of the ammonite faunas of the Type Cenomanian, 4. Acanthoceratinae (Acompsoceras, Acanthoceras, Protacanthoceras, Cunningtoniceras and Thomelites). Cretaceous Research 14, 145–90.CrossRefGoogle Scholar
Kennedy, WJ and Juignet, P (1994) A revision of the ammonite faunas of the type Cenomanian, Acanthoceratinae Calycoceras (Calycoceras), C. gentoniceras and C. newboldiceras. Cretaceous Research 15, 1757.CrossRefGoogle Scholar
Kennedy, WJ and Klinger, HC (2010) Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Acanthoceratinae de Grossouvre, 1894. African Natural History 6, 176.Google Scholar
Kennedy, WJ, Walaszczy, I, Gale, A, Dembicz, K and Praszkier, T (2013) Lower and middle Cenomanian ammonites from the Morondava Basin, Madagascar. Acta Geologica Polonica 63, 625–55.CrossRefGoogle Scholar
Koutsoukos, EAM, Leary, PN and Hart, MB (1990) Latest Cenomanian–earliest Turonian low-oxygen tolerant benthonic foraminifera: a case study from the Sergipe Basin (N.E. Brazil) and the western Anglo-Paris Basin (southern England). Palaeogeography, Palaeoclimatology, Palaeoecology 77, 145–77.CrossRefGoogle Scholar
Laffitte, R (1939) Etude géologique de l’Aurès + 1 carte au 1/200000. Bulletin du Service Géologique de l’Algérie. (Thèse), Paris, 1(11), 484 pp.Google Scholar
Lamarck, JPBA de M (1801) Système des Animaux sans vertèbres. Deterville; Paris: The author, vii + 432 pp.Google Scholar
Lasseur, E, Neraudeau, D, Guillocheau, F, Robin, C, Hanot, F, Videt, B and Mavrieux, M (2008) Stratigraphie et sédimentologie comparées du Crétacée supérieur du Bassin de Paris et du Bassin Nord-Aquitain (4–7 octobre 2008), Excursion du Groupe Français du Crétacé. GFC 2008, Série ‘Excursion’, 100 pp.Google Scholar
Marcinowski, R, Walaszczyk, I and Olszewskanejbert, D (1996) Stratigraphy and regional development of the mid-Cretaceous (upper Albian through Coniacian) of the Mangyshlak Mountains, western Kazakhstan. Acta Geologica Polonica 46, 160.Google Scholar
Mosavina, A and Wilmsen, M (2011) Cenomanian Acanthoceratoidea (Cretaceous Ammonoidea) from the Koppeh Dagh, NE Iran: taxonomy and stratigraphic implications. Acta Geologica Polonica 61, 175–92.Google Scholar
Naili, H, Belhaj, Z, Robaszynski, F and Caron, M (1995) Présence de roches mères à faciès Bahloul vers la limite Cénomanien-Turonien dans la région de Tébessa (Algérie orientale). Notes du Service Géologique de Tunisie 61, 1932.Google Scholar
Noemi, AF and Allison, P (2005) Events of Cenomanian-Turonian succession, Southern Mexico. Journal of Iberian Geology 31, 3550.Google Scholar
Paul, CRC, Mitchell, SF, Marshall, JD, Leary, PN, Gale, AS, Duane, AM and Fitchfield, PW (1994) Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. Cretaceous Research 15, 707–38.CrossRefGoogle Scholar
Pervinquière, L (1907) Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Mémoires de la Carte Géologique de la Tunisie, v + 438 pp.Google Scholar
Rawson, PF, Curry, D, Dilley, FC, Hancock, JM, Kennedy, WJ, Neale, JW, Wood, CJ and Worssam, BC (1978) A Correlation of Cretaceous Rocks in the British Isles. Geological Society of London Special Report no. 9, 70 pp.Google Scholar
Rawson, PF, Dhondt, AV, Hancock, JM and Kennedy, WJ (eds) (1996) Proceedings of the 2nd International Symposium on Cretaceous Stage Boundaries, Brussels, 8–16 Sept. 1995. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 66, 177 pp.Google Scholar
Reboulet, S, Guiraud, F, Colombié, C and Carpentier, A (2013) Integrated stratigraphy of the lower and middle Cenomanian in a Tethyan section (Blieux, southeast France) and correlations with Boreal basins. Cretaceous Research 40, 170–89.CrossRefGoogle Scholar
Robaszynski, F, Amédro, F, González-Donoso, JM andLinares, D (2007) Les bioévénements de la limite Albien (Vraconnien)-Cénomanien aux marges nord et sud de la Téthys (S.E. de la France et Tunisie centrale). In Relations entre les marges septentrionale et méridionale de la Téthys au Crétacé [Relations between the northern and southern margins of the Tethys ocean during the Cretaceous period]. Carnets de Géologie / Notebooks on Geology (eds Bulot, LG, Ferry, S and Grosheny, D), pp. 315. Brest, Memoir 2007/02, Abstract 01 (CG2007_ M02/01).Google Scholar
Robaszynski, F and Caron, M (1995) Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe-Méditerranée. Bulletin de la Société Géologique de France 166, 681–92.Google Scholar
Robaszynski, F, Caron, M, Amédro, F, Dupuis, C, Hardenbol, J, Gonzales-Donoso, JM, Llnares, D andGartner, S (1993) Le Cénomanien de la région de Kalaat Senan (Tunisie Centrale). Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine 17, 395433.Google Scholar
Robaszynski, F, Caron, M, Amedro, F, Dupuis, C, Hardenbol, J, Gonzales Donoso, JM, Llnares, D and Gartner, S (1994) Le Cénomanien de la région de Kalaat Senan (Tunisie Centrale). Revue de Paléobiologie 12, 351505.Google Scholar
Robaszynski, F, Caron, M, Dupuis, C, Amedro, F, Gonzalez Donoso, J-M, Linares, D, Hardenbol, J, Gartner, S, Calandra, F and Deloffre, R (1990) A tentative integrated stratigraphy in the Turonian of central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine 14, 213384.Google Scholar
Robaszynski, F, Dupuis, C, Gonzalez-Donoso, JM and Linares, D (2008) The Albian (Vraconien). Cenomanian boundary at the western Tethyan margins (Central Tunisia and southeastern France). Bulletin de la Société Géologique de France 179, 245–56.CrossRefGoogle Scholar
Robaszynski, F, Faouzi Zagrarni, M, Caron, M and Amedro, F (2010) The global bio-events at the Cenomanian-Turonian transition in the reduced Bahloul Formation of Bou Ghanem (Central Tunisia). Cretaceous Research 31, 115.CrossRefGoogle Scholar
Ruault-Djerrab, M, Ferré, B and Kechid-Benkherouf, F (2012) Etude micropaléontologique du Cénomano-Turonien dans la région de Tébessa (NE Algérie): implications paléoenvironnementales et recherche de l’empreinte de l’OAE2. Revue de Paléobiologie, Genève 31, 127–44.Google Scholar
Ruault-Djerrab, M, Kechid-Benkherouf, F and Djerrab, A (2014) Données paléoenvironnementales sur le Vraconien/Cénomanien de la région de Tébessa (Atlas Saharien, nord-est Algérie). Caractérisation de l’OAE2. Annales de Paléontologie 100, 343–59.CrossRefGoogle Scholar
Schlanger, SO and Jenkyns, HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179–84.Google Scholar
Segura, M, Barroso-Barcenilla, F, Callapez, P, García-Hidalgo, JF and Gil-Gil, J (2014) Depositional sequences and ammonoid assemblages in the upper Cenomanian-lower Santonian of the Iberian Peninsula (Spain and Portugal). Geologica Acta 12, 1927.Google Scholar
Spath, LF (1926a) On the zones of the Cenomanian and the uppermost Albian. Proceedings of the Geologists’ Association 37, 420–32.CrossRefGoogle Scholar
Spath, LF (1926b) On new ammonites from the English Chalk. Geological Magazine 63, 7783.CrossRefGoogle Scholar
Sowerby, J (1812–22) The Mineral Conchology of Great Britain. 1, pls. 1–9 (1812), pls. 10–44 (1813), pls. 45–78 (1814), pls. 79–102 (1815); 2, pls. 103–14 (1815), pls. 115–50 (1816), pls. 151–86 (1817), pls. 187–203 (1818); 3, pls. 204–21 (1818), pls. 222–53 (1819), pls. 254–71 (1820), pls. 272–306 (1821); 4, pls. 307–18 (1821), pls. 319–83 (1822). London.Google Scholar
Thomel, G (1972) Les Acanthoceratideas cénomaniens des chaines subalpines méridionales. Mémoire de la Société géologique de France no. 116, 204 pp.Google Scholar
Tröger, KA, Kennedy, WJ, Bumett, JA, Caron, M, Gale, AS and Robaszynski, F (1996) The Cenomanian stage. Bulletin de l’institut royal des sciences naturelles de Belgique 66, 5768.Google Scholar
Wilmsen, M (2007) Integrated stratigraphy of the upper lower - lower middle Cenomanian of northern Germany and southern England. Acta Geologica Polonica 57, 263–79.Google Scholar
Wright, CW and Kennedy, WJ (1981) The Ammonoidea of the Plenus Marls and the Middle Chalk. London: Monograph of the Palaeontographical Society, vol. 134, issue 560. 148 pp.Google Scholar
Wright, CW and Kennedy, WJ (1984) The Ammonoidea of the Lower Chalk, Part 1. London: Monograph of the Palaeontographical Society 567, pp. 1126.Google Scholar
Wright, CW and Kennedy, WJ (1987) The Ammonoidea of the Lower Chalk. Part 2. London: Monograph of the Palaeontographical Society 573, pp. 127218.Google Scholar
Wright, CW and Kennedy, WJ (1990) The Ammonoidea of the Lower Chalk. Part 3. London: Monograph of the Palaeontographical Society 585, pp. 219–94.Google Scholar
Zagrarni, MF, Negra, MH and Hanini, A (2008) Cenomanian–Turonian facies and sequence stratigraphy, Bahloul Formation, Tunisia. Sedimentary Geology 204, 1835.CrossRefGoogle Scholar