Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-9mpts Total loading time: 0.478 Render date: 2022-12-09T06:11:07.842Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The Nazca Drift System – palaeoceanographic significance of a giant sleeping on the SE Pacific Ocean floor

Published online by Cambridge University Press:  02 November 2021

Gérôme Calvès*
Affiliation:
Université Toulouse III, GET-OMP, 14 avenue Edouard Belin, 31400, Toulouse, France
Alan Mix
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR97331, USA
Liviu Giosan
Affiliation:
Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA02543, USA
Peter D. Clift
Affiliation:
Department of Geology and Geophysics, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana70803, USA
Stéphane Brusset
Affiliation:
Université Toulouse III, GET-OMP, 14 avenue Edouard Belin, 31400, Toulouse, France
Patrice Baby
Affiliation:
IRD, GET-OMP, 14 avenue Edouard Belin, 31400, Toulouse, France
Mayssa Vega
Affiliation:
Universidad San Antonio Abad del Cusco, Av. De la Cultura 773, 08000 Cusco. Peru
*
Author for correspondence: Gérôme Calvès, Email: gerome.calves@univ-tlse3.fr

Abstract

The evolution and resulting morphology of a contourite drift system in the SE Pacific oceanic basin is investigated in detail using seismic imaging and an age-calibrated borehole section. The Nazca Drift System covers an area of 204 500 km2 and stands above the abyssal basins of Peru and Chile. The drift is spread along the Nazca Ridge in water depths between 2090 and 5330 m. The Nazca Drift System was drilled at Ocean Drilling Program Site 1237. This deep-water drift overlies faulted oceanic crust and onlaps associated volcanic highs. Its thickness ranges from 104 to 375 m. The seismic sheet facies observed are associated with bottom current processes. The main lithologies are pelagic carbonates reflecting the distal position relative to South America and water depth above the carbonate compensation depth during Oligocene time. The Nazca Drift System developed under the influence of bottom currents sourced from the Circumpolar Deep Water and Pacific Central Water, and is the largest yet identified abyssal drift system of the Pacific Ocean, ranking third in all abyssal contourite drift systems globally. Subduction since late Miocene time and the excess of sediments and water associated with the Nazca Drift System may have contributed to the Andean orogeny and associated metallogenesis. The Nazca Drift System records the evolution in interactions between deep-sea currents and the eastward motion of the Nazca Plate through erosive surfaces and sediment remobilization.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, WS, McArthur, AD and McCaffrey, WD (2021) Distribution of contourite drifts on convergent margins: examples from the Hikurangi subduction margin of New Zealand. Sedimentology 68, 294323. doi: 10.1111/sed.12779.CrossRefGoogle Scholar
Barker, PF, Filippelli, GM, Florindo, F, Martin, EE and Scher, HD (2007) Onset and role of the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography 54, 2388–98. doi: 10.1016/j.dsr2.2007.07.028.CrossRefGoogle Scholar
Berger, WH (1978) Sedimentation of deep-sea carbonate; maps and models of variations and fluctuations. Journal of Foraminiferal Research 8, 286302. doi: 10.2113/gsjfr.8.4.286.CrossRefGoogle Scholar
Berger, WH, Bonneau, M-C and Parker, FL (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanologica Acta 5, 249–58.Google Scholar
Bornhold, BD and Summerhayes, CP (1977) Scour and deposition at the foot of the Walvis Ridge in the northernmost Cape Basin, South Atlantic. Deep Sea Research 24, 743–52. doi: 10.1016/0146-6291(77)90497-0.CrossRefGoogle Scholar
Boyer, TP, Antonov, JI, Baranova, OK, Coleman, C, Garcia, HE, Grodsky, A, Johnson, DR, Locarnini, RA, Mishonov, AV, O’Brien, TD, Paver, CR, Reagan, JR, Seidov, D, Smolyar, IV and Zweng, MM (2013) World Ocean Database 2013; NOAA Atlas NESDIS 72 (ed. Levitus, S; technical ed. Mishonov, A). Silver Spring, MD: National Oceanographic Data Center, 209 pp. doi: 10.7289/V5NZ85MT.Google Scholar
Boyle, PR, Romans, BW, Tucholke, BE, Norris, RD, Swift, SA and Sexton, PF (2017) Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada. Marine Geology 385, 185203. doi: 10.1016/j.margeo.2016.12.014.CrossRefGoogle Scholar
Bray, CJ and Karig, DE (1985) Porosity of sediments in accretionary prisms and some implications for dewatering processes. Journal of Geophysical Research: Solid Earth 90, 768–78. doi: 10.1029/JB090iB01p00768.CrossRefGoogle Scholar
Calvès, G, Auguy, C, de Lavaissière, L, Brusset, S, Calderon, Y and Baby, P (2017) Fore-arc seafloor unconformities and geology: insight from 3-D seismic geomorphology analysis, Peru. Geochemistry, Geophysics, Geosystems 18, 3062–77. doi: 10.1002/2017GC007036.CrossRefGoogle Scholar
Calvès, G, Schwab, AM, Huuse, M, Clift, PD, Gaina, C, Jolley, D, Tabrez, AR and Inam, A (2011) Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province. Journal of Geophysical Research 116, B01101. doi: 10.1029/2010JB000862.CrossRefGoogle Scholar
Carter, L, Carter, RM and McCave, IN (2004) Evolution of the sedimentary system beneath the deep Pacific inflow off eastern New Zealand. Marine Geology 205, 927. doi: 10.1016/S0025-3227(04)00016-7.CrossRefGoogle Scholar
Carter, L, Carter, RM, McCave, IN and Gamble, J (1996) Regional sediment recycling in the abyssal Southwest Pacific Ocean. Geology 24, 735–8. doi: 10.1130/0091-7613(1996)024<0735:RSRITA>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Carter, L and McCave, IN (1994) Development of sediment drifts approaching an active plate margin under the SW Pacific Deep Western Boundary Current. Paleoceanography 9, 1061–85. doi: 10.1029/94PA01444.CrossRefGoogle Scholar
Carter, L and McCave, IN (2002) Eastern New Zealand drifts, Miocene–Recent. In Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (eds Stow, DAV, Pudsey, CJ, Howe, JA, Faugères, and Viana, AR), pp. 385407. Geological Society of London, Memoirs no. 22. doi: 10.1144/GSL.MEM.2002.022.01.27.Google Scholar
Carter, RM, McCave, IN, Richter, C, Carter, L, Aita, Y, Buret, C, Di Stefano, A, Fenner, J, Fothergill, P, Gradstein, F, Hall, I, Handwerger, D, Harris, S, Hayward, B, Hu, S, Joseph, L, Khim, BK, Lee, Y-D, Millwood, L, Rinna, J, Smith, G, Suzuki, A, Weedon, G, Wei, K-Y, Wilson, G and Winkler, A (1999) Proceedings of the Ocean Drilling Program, Initial Reports, vol. 181. College Station, Texas. doi: 10.2973/odp.proc.ir.181.2000.Google Scholar
Casalbore, D (2018) Volcanic islands and seamounts. In Submarine Geomorphology (eds Micallef, A, Krastel, S and Savini, A), pp. 333–47. Cham: Springer International Publishing. doi: 10.1007/978-3-319-57852-1_17.CrossRefGoogle Scholar
Chaigneau, A, Dominguez, N, Eldin, G, Vasquez, L, Flores, R, Grados, C and Echevin, V (2013) Near-coastal circulation in the Northern Humboldt Current System from shipboard ADCP data. Journal of Geophysical Research: Oceans 118, 5251–66. doi: 10.1002/jgrc.20328.CrossRefGoogle Scholar
Chun, COJ and Delaney, ML (2006) Phosphorus, barium, manganese, and uranium concentrations and geochemistry, Nazca Ridge Site 1237 sediments. In Proceedings of the Ocean Drilling Project, Scientific Results, vol. 202 (eds Tiedemann, R, Mix, AC, Richter, C and Ruddiman, WF), pp. 119. College Station, Texas. doi: 10.2973/odp.proc.sr.202.205.2006.Google Scholar
Clift, PD (2017) A revised budget for Cenozoic sedimentary carbon subduction. Reviews of Geophysics 55, 97125. doi: 10.1002/2016RG000531.CrossRefGoogle Scholar
Clift, PD, Pecher, I, Kukowski, N and Hampel, A (2003) Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22, 1023. doi: 10.1029/2002TC001386.CrossRefGoogle Scholar
Cormier, M-H and Sloan, H (2018) Abyssal hills and abyssal plains. In Submarine Geomorphology (eds Micallef, A, Krastel, S and Savini, A), pp. 389408. Cham: Springer International Publishing. doi: 10.1007/978-3-319-57852-1_20.CrossRefGoogle Scholar
D’Hondt, SL, Jørgensen, BB, Miller, DJ, Aiello, IW, Bekins, B, Blake, R, Cragg, BA, Cypionka, H, Dickens, GR, Ferdelman, T, Ford, K, Gettemy, GL, Guèrin, G, Hinrichs, K-U, Holm, N, House, C, Inagaki, F, Meister, P, Mitterer, RM, Naehr, T, Niitsuma, S, Parkes, RJ, Schippers, A, Skilbeck, CG, Smith, DC, Spivack, AJ, Teske, A and Wiegel, J (2003) Proceedings of the Ocean Drilling Program, Initial Reports, vol. 201. College Station, Texas. doi: 10.2973/odp.proc.ir.201.2003.CrossRefGoogle Scholar
Donda, F, Brancolini, G, Santis, LD and Trincardi, F (2003) Seismic facies and sedimentary processes on the continental rise off Wilkes Land (East Antarctica): evidence of bottom current activity. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1509–27. doi: 10.1016/S0967-0645(03)00075-4.CrossRefGoogle Scholar
Dubois, N and Mitchell, NC (2012) Large-scale sediment redistribution on the equatorial Pacific seafloor. Deep Sea Research Part I: Oceanographic Research Papers 69, 5161. doi: 10.1016/j.dsr.2012.07.006.CrossRefGoogle Scholar
Dutkiewicz, A, Müller, RD, O’Callaghan, S and Jónasson, H (2015) Census of seafloor sediments in the world’s ocean. Geology 43, 795–8. doi: 10.1130/G36883.1.CrossRefGoogle Scholar
Emery, WJ (2019) Water types and water masses. In Encyclopedia of Ocean Sciences (Third Edition) (eds Cochran, JK, Bokuniewicz, HJ and Yager, PL), pp. 169–79. Oxford: Academic Press. doi: 10.1016/B978-0-12-409548-9.04426-2.CrossRefGoogle Scholar
Emery, WJ and Meincke, J (1986) Global water masses: summary and review. Oceanologica Acta 9, 383–91.Google Scholar
Esentia, I, Stow, D and Smillie, Z (2018) Contourite drifts and associated bedforms. In Submarine Geomorphology (eds Micallef, A, Krastel, S and Savini, A), pp. 301–31. Cham: Springer International Publishing. doi: 10.1007/978-3-319-57852-1_16.CrossRefGoogle Scholar
Espurt, N, Baby, P, Brusset, S, Roddaz, M, Hermoza, W, Regard, V, Antoine, P-O, Salas-Gismondi, R and Bolaños, R (2007) How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35, 515–18. doi: 10.1130/G23237A.1.CrossRefGoogle Scholar
Faugères, J-C, Stow, DA, Imbert, P and Viana, A (1999) Seismic features diagnostic of contourite drifts. Marine Geology 162, 138. doi: 10.1016/S0025-3227(99)00068-7.CrossRefGoogle Scholar
Flood, RD and Shor, AN (1988) Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns. Deep Sea Research Part A. Oceanographic Research Papers 35, 943–71. doi: 10.1016/0198-0149(88)90070-2.CrossRefGoogle Scholar
GEBCO Compilation Group 2019 (2019) The GEBCO_2019 Grid – A Continuous Terrain Model of the Global Oceans and Land. Liverpool: British Oceanographic Data Centre, National Oceanography Centre, NERC. doi: 10.5285/836f016a-33be-6ddc-e053-6c86abc0788e.Google Scholar
Gomes, PO and Viana, AR (2002) Contour currents, sediment drifts and abyssal erosion on the northeastern continental margin off Brazil. In Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (eds Stow, DAV, Pudsey, CJ, Howe, JA, Faugères, and Viana, AR), pp. 239–48. Geological Society of London, Memoirs no. 22. doi: 10.1144/GSL.MEM.2002.022.01.17 Google Scholar
Grove, TL, Till, CB and Krawczynski, MJ (2012) The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences 40, 413–39. doi: 10.1146/annurev-earth-042711-105310.CrossRefGoogle Scholar
Gutscher, M-A, Olivet, J-L, Aslanian, D, Eissen, J-P and Maury, R (1999) The “lost Inca plateau”: cause of flat subduction beneath Peru? Earth and Planetary Science Letters 171, 335–41. doi: 10.1016/S0012-821X(99)00153-3.CrossRefGoogle Scholar
Hampel, A (2002) The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth and Planetary Science Letters 203, 665–79. doi: 10.1016/S0012-821X(02)00859-2.CrossRefGoogle Scholar
Hampel, A, Kukowski, N, Bialas, J, Huebscher, C and Heinbockel, R (2004) Ridge subduction at an erosive margin: the collision zone of the Nazca Ridge in southern Peru. Journal of Geophysical Research: Solid Earth 109, B02101. doi: 10.1029/2003JB002593.CrossRefGoogle Scholar
Harris, PT and Macmillan-Lawler, M (2018) Origin and geomorphic characteristics of ocean basins. In Submarine Geomorphology (eds Micallef, A, Krastel, S and Savini, A), pp. 111–34. Cham: Springer International Publishing. doi: 10.1007/978-3-319-57852-1_8.CrossRefGoogle Scholar
Harris, PT, Macmillan-Lawler, M, Rupp, J and Baker, EK (2014) Geomorphology of the oceans. Marine Geology 352, 424. doi: 10.1016/j.margeo.2014.01.011.CrossRefGoogle Scholar
Heezen, BC and Hollister, C (1964) Deep-sea current evidence from abyssal sediments. Marine Geology 1, 141–74. doi: 10.1016/0025-3227(64)90012-X.CrossRefGoogle Scholar
Hernández-Molina, FJ, Llave, E and Stow, DAV (2008) Chapter 19 continental slope contourites. In Contourites (eds Rebesco, M and Camerlenghi, A), pp. 379408. Developments in Sedimentology vol. 60. doi: 10.1016/S0070-4571(08)10019-X.CrossRefGoogle Scholar
Hodel, F, Grespan, R, de Rafélis, M, Dera, G, Lezin, C, Nardin, E, Rouby, D, Aretz, M, Steinnman, M, Buatier, M, Lacan, F, Jeandel, C and Chavagnac, V (2021) Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the Neodymium isotope record. Chemical Geology 570, 120171. doi: 10.1016/j.chemgeo.2021.120171.CrossRefGoogle Scholar
Horn, M and Uenzelmann-Neben, G (2015) The Deep Western Boundary Current at the Bounty Trough, east of New Zealand: indications for its activity already before the opening of the Tasmanian Gateway. Marine Geology 362, 6075. doi: 10.1016/j.margeo.2015.01.011.CrossRefGoogle Scholar
Johnson, GC (2008) Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. Journal of Geophysical Research: Oceans 113, C05027. doi: 10.1029/2007JC004477.CrossRefGoogle Scholar
Juan, C, Van Rooij, D and De Bruycker, W (2018) An assessment of bottom current controlled sedimentation in Pacific Ocean abyssal environments. Marine Geology 403, 2033. doi: 10.1016/j.margeo.2018.05.001.CrossRefGoogle Scholar
Kerr, BC, Scholl, DW and Klemperer, SL (2005) Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: post-hot-spot shield-building volcanism and deposition of the Meiji drift. Geochemistry, Geophysics, Geosystems 6, Q07L10. doi: 10.1029/2004GC000705.CrossRefGoogle Scholar
King, DJ and Wade, BS (2017) The extinction of Chiloguembelina cubensis in the Pacific Ocean: implications for defining the base of the Chattian (upper Oligocene). Newsletters on Stratigraphy 50, 311–39. doi: 10.1127/nos/2016/0308.CrossRefGoogle Scholar
Koenitz, D, White, N, McCave, IN and Hobbs, R (2008) Internal structure of a contourite drift generated by the Antarctic Circumpolar Current. Geochemistry, Geophysics, Geosystems 9, Q06012. doi: 10.1029/2007GC001799.CrossRefGoogle Scholar
Kolla, V, Eittreim, S, Sullivan, L, Kostecki, JA and Burckle, LH (1980) Current-controlled, abyssal microtopography and sedimentation in Mozambique Basin, southwest Indian Ocean. Marine Geology 34, 171206. doi: 10.1016/0025-3227(80)90071-7.CrossRefGoogle Scholar
Kukowski, N, Hampel, A, Hoth, S and Bialas, J (2008) Morphotectonic and morphometric analysis of the Nazca plate and the adjacent offshore Peruvian continental slope – implications for submarine landscape evolution. Marine Geology 254, 107–20. doi: 10.1016/j.margeo.2008.05.017.CrossRefGoogle Scholar
Kukowski, N and Oncken, O (2006) Subduction erosion – the “Normal” mode of fore-arc material transfer along the Chilean margin? In The Andes: Active Subduction Orogeny (eds Oncken, O, Chong, G, Franz, G, Giese, P, Götze, H-J, Ramos, VA, Strecker, MR and Wigger, P), pp. 217–36. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-48684-8_10.CrossRefGoogle Scholar
Lamb, S and Davis, P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–7. doi: 10.1038/nature02049.CrossRefGoogle ScholarPubMed
Land, LA, Paull, CK and Spiess, FN (1999) Abyssal erosion and scarp retreat: Deep Tow observations of the Blake Escarpment and Blake Spur. Marine Geology 160, 6383. doi: 10.1016/S0025-3227(99)00012-2.CrossRefGoogle Scholar
Lawver, LA and Gahagan, LM (1998) Opening of Drake Passage and its impact on Cenozoic ocean. In Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, TJ and Burke, KC), pp. 212–23. New York: Oxford University Press.Google Scholar
Lonsdale, P (1976) Abyssal circulation of the southeastern Pacific and some geological implications. Journal of Geophysical Research (1896–1977) 81, 1163–76. doi: 10.1029/JC081i006p01163.CrossRefGoogle Scholar
Lonsdale, P and Malfait, B (1974) Abyssal dunes of foraminiferal sand on the Carnegie Ridge. Geological Society of America Bulletin 85, 1697–712. doi: 10.1130/0016-7606(1974)85<1697:ADOFSO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Lyle, M, Gibbs, S, Moore, TC and Rea, DK (2007) Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific. Geology 35, 691–4. doi: 10.1130/G23806A.1.CrossRefGoogle Scholar
Magee, C, Hunt-Stewart, E and Jackson, CAL (2013) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth and Planetary Science Letters 373, 4153. doi: 10.1016/j.epsl.2013.04.041.CrossRefGoogle Scholar
Marani, M, Argnani, A, Roveri, M and Trincardi, F (1993) Sediment drifts and erosional surfaces in the central Mediterranean: seismic evidence of bottom-current activity. Sedimentary Geology 82, 207–20. doi: 10.1016/0037-0738(93)90122-L.CrossRefGoogle Scholar
Mitchell, NC and Huthnance, JM (2013) Geomorphological and geochemical evidence (230Th anomalies) for cross-equatorial currents in the central Pacific. Deep Sea Research Part I: Oceanographic Research Papers 78, 2441. doi: 10.1016/j.dsr.2013.04.003.CrossRefGoogle Scholar
Mitchum, RM Jr, Vail, PR and Sangree, JB (1977) Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences. In Seismic Stratigraphy – Applications to Hydrocarbon Exploration (ed. Payton, CE), pp. 117–33. American Association of Petroleum Geologists Memoir no. 26. doi: 10.1306/M26490C8.Google Scholar
Mix, A (1997) Report and Index of Underway Marine Geophysical Data: Genesis Expedition LEG 3 (GENE03RR) R/V Revelle. La Jolla: Geological Data Center, Scripps Institution of Oceanography. Google Scholar
Mulder, T, Ducassou, E, Hanquiez, V, Principaud, M, Fauquembergue, K, Tournadour, E, Chabaud, L, Reijmer, J, Recouvreur, A, Gillet, H, Borgomano, J, Schmitt, A and Moal, P (2019) Contour current imprints and contourite drifts in the Bahamian archipelago. Sedimentology 66, 1192–221. doi: 10.1111/sed.12587.CrossRefGoogle Scholar
Müller, RD, Sdrolias, M, Gaina, C and Roest, WR (2008) Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems 9, Q04006. doi: 10.1029/2007GC001743.CrossRefGoogle Scholar
Nielsen, T, Knutz, PC and Kuijpers, A (2008) Chapter 16 seismic expression of contourite depositional systems. In Contourites (eds Rebesco, M and Camerlenghi, A), pp. 301–21. Developments in Sedimentology vol. 60. doi: 10.1016/S0070-4571(08)10016-4.CrossRefGoogle Scholar
Pälike, H, Lyle, MW, Nishi, H, Raffi, I, Ridgwell, A, Gamage, K, Klaus, A, Acton, G, Anderson, L, Backman, J, Baldauf, J, Beltran, C, Bohaty, SM, Bown, P, Busch, W, Channell, JET, Chun, COJ, Delaney, M, Dewangan, P, Dunkley Jones, T, Edgar, KM, Evans, H, Fitch, P, Foster, GL, Gussone, N, Hasegawa, H, Hathorne, EC, Hayashi, H, Herrle, JO, Holbourn, A, Hovan, S, Hyeong, K, Iijima, K, Ito, T, Kamikuri, S, Kimoto, K, Kuroda, J, Leon-Rodriguez, L, Malinverno, A, Moore, TC Jr, Murphy, BH, Murphy, DP, Nakamura, H, Ogane, K, Ohneiser, C, Richter, L, Sluijs, A, Takata, H, Tian, J, Tsujimoto, A, Wade, BS, Westerhold, T, Wilkens, R, Williams, T, Wilson, PA, Yamamoto, Y, Yamamoto, S, Yamazaki, T and Zeebe, RE (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–14. doi: 10.1038/nature11360.CrossRefGoogle ScholarPubMed
Parnell-Turner, R, White, NJ, McCave, IN, Henstock, TJ, Murton, B and Jones, SM (2015) Architecture of North Atlantic contourite drifts modified by transient circulation of the Icelandic mantle plume. Geochemistry, Geophysics, Geosystems 16, 3414–35. doi: 10.1002/2015GC005947.CrossRefGoogle Scholar
Pilger, RH Jr (1981) Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Bulletin 92, 448–56. doi: 10.1130/0016-7606(1981)92<448:PRARAL>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Plank, T and Manning, CE (2019) Subducting carbon. Nature 574, 343–52. doi: 10.1038/s41586-019-1643-z.CrossRefGoogle ScholarPubMed
Planke, S, Rasmussen, T, Rey, SS and Myklebust, R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In Petroleum Geology: North-West Europe and Global Perspectives –xsxs Proceedings of the 6th Petroleum Geology Conference vol. 6 (eds Doré, AG and Vining, BA), pp. 833–44. London: Geological Society of London. doi: 10.1144/0060833.Google Scholar
Rea, DK and Leinen, M (1985) Neogene history of the calcite compensation depth and lysocline in the South Pacific Ocean. Nature 316, 805–7. doi: 10.1038/316805a0.CrossRefGoogle Scholar
Rebesco, M, Hernández-Molina, FJ, Van Rooij, D and Wåhlin, A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Marine Geology 352, 111–54. doi: 10.1016/j.margeo.2014.03.011.CrossRefGoogle Scholar
Rebesco, M and Stow, D (2001) Seismic expression of contourites and related deposits: a preface. Marine Geophysical Researches 22, 303–8. doi: 10.1023/A:1016316913639.CrossRefGoogle Scholar
Reed, DL, Meyer, AW, Silver, EA and Prasetyo, H (1987) Contourite sedimentation in an intraoceanic forearc system: Eastern Sunda Arc, Indonesia. Marine Geology 76, 223–41. doi: 10.1016/0025-3227(87)90031-4.CrossRefGoogle Scholar
Rees, BA, Detrick, R and Coakley, BJ (1993) Seismic stratigraphy of the Hawaiian flexural moat. Geological Society of America Bulletin 105, 189205. doi: 10.1130/0016-7606(1993)105<0189:Ssothf>2.3.Co;2.2.3.CO;2>CrossRefGoogle Scholar
Rosenbaum, G, Giles, D, Saxon, M, Betts, PG, Weinberg, RF and Duboz, C (2005) Subduction of the Nazca Ridge and the Inca Plateau: insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters 239, 1832. doi: 10.1016/j.epsl.2005.08.003.CrossRefGoogle Scholar
Rousse, S, Gilder, S, Farber, D, McNulty, B, Patriat, P, Torres, V and Sempere, T (2003) Paleomagnetic tracking of mountain building in the Peruvian Andes since 10 Ma. Tectonics 22, 1048. doi: 10.1029/2003TC001508.CrossRefGoogle Scholar
Ryan, MC, Helland-Hansen, W, Johannessen, EP and Steel, RJ (2009) Erosional vs. accretionary shelf margins: the influence of margin type on deepwater sedimentation: an example from the Porcupine Basin, offshore western Ireland. Basin Research 21, 676703. doi: 10.1111/j.1365-2117.2009.00424.x.CrossRefGoogle Scholar
Scher, HD and Martin, EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–30. doi: 10.1126/science.1120044.CrossRefGoogle ScholarPubMed
Scher, HD, Whittaker, JM, Williams, SE, Latimer, JC, Kordesch, WEC and Delaney, ML (2015) Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580. doi: 10.1038/nature14598.CrossRefGoogle ScholarPubMed
Sepulchre, P, Sloan, LC, Snyder, M and Fiechter, J (2009) Impacts of Andean uplift on the Humboldt Current system: a climate model sensitivity study. Paleoceanography 24, PA4215. doi: 10.1029/2008PA001668.CrossRefGoogle Scholar
Shaffer, G, Hormazabal, S, Pizarro, O and Ramos, M (2004) Circulation and variability in the Chile Basin. Deep Sea Research Part I: Oceanographic Research Papers 51, 1367–86. doi: 10.1016/j.dsr.2004.05.006.CrossRefGoogle Scholar
Shaffer, G, Salinas, S, Pizarro, O, Vega, A and Hormazabal, S (1995) Currents in the deep ocean off Chile (30°S). Deep Sea Research Part I: Oceanographic Research Papers 42, 425–36. doi: 10.1016/0967-0637(95)99823-6.CrossRefGoogle Scholar
Shipboard Scientific Party (1976) Site 321. In Initial Reports of the Deep Sea Drilling Project, vol. 34 (eds Yeats, RS, Hart, SR, Ade-Hall, JM, Bass, MN, Benson, WE, Hart, RA, Quilty, PG, Sachs, HM, Salisbury, MH and Vallier, TL), pp. 111–53. Washington: U.S. Government Printing Office. doi: 10.2973/dsdp.proc.34.105.1976.CrossRefGoogle Scholar
Shipboard Scientific Party (1988) Introduction, objectives, and principal results, Leg 112, Peru continental margin. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 112 (eds Suess, E, von Huene, R, Emeis, K-C, Bourgois, J, del C Cruzado Casteñeda, J, De, P Wever, , Eglinton, G, Garrison, R, Greenberg, M, Herrera Paz, E, Hill, P, Ibaraki, M, Kastner, M, Kemp, AES, Kvenvolden, K, Langridge, R, Lindsley-Griffin, N, Sanchez Fernandez, AW, Schrader, H-J, Thornburg, T, Wefer, G and Yamano, M), pp. 523. College Station, Texas. doi: 10.2973/odp.proc.ir.112.102.1988.CrossRefGoogle Scholar
Shipboard Scientific Party (1992) Introduction. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 138 (eds Mayer, LA, Pisias, NG, Janecek, TR, Baldauf, JG, Bloomer, SF, Dadey, KA, Emeis, K-C, Farrell, J, Flores, JA, Galimov, EM, Hagelberg, TK, Holler, P, Hovan, SA, Iwai, M, Kemp, AES, Kim, DC, Klinkhammer, G, Leinen, M, Levi, S, Levitan, MA, Lyle, MW, MacKillop, AK, Meynadier, LM, Mix, AC, Moore, TC Jr, Raffi, I, Ravelo, C, Schneider, D, Shackleton, NJ, Valet, J-P and Vincent, E), pp. 512. College Station, Texas. doi: 10.2973/odp.proc.ir.138.101.1992.Google Scholar
Shipboard Scientific Party (1999) Leg 181 summary: Southwest Pacific paleoceanography. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 181 (eds Carter, RM, McCave, IN, Richter, C, Carter, L, Aita, Y, Buret, C, Di Stefano, A, Fenner, J, Fothergill, P, Gradstein, F, Hall, I, Handwerger, D, Harris, S, Hayward, B, Hu, S, Joseph, L, Khim, BK, Lee, Y-D, Millwood, L, Rinna, J, Smith, G, Suzuki, A, Weedon, G, Wei, K-Y, Wilson, G and Winkler, A), pp. 180. College Station, Texas. doi: 10.2973/odp.proc.ir.181.101.2000.Google Scholar
Shipboard Scientific Party (2003a) Leg 202 summary. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 202 (eds Mix, AC, Tiedemann, R, Blum, P, Abrantes, FF, Benway, H, Cacho-Lascorz, I, Chen, M-T, Delaney, ML, Flores, J-A, Giosan, L, Holbourn, AE, Irino, T, Iwai, M, Joseph, LH, Kleiven, HF, Lamy, F, Lund, SP, Martinez, P, McManus, JF, Ninnemann, US, Pisias, NG, Robinson, RS, Stoner, JS, Sturm, A, Wara, MW and Wei, W), pp. 1145. College Station, Texas. doi: 10.2973/odp.proc.ir.202.101.2003.CrossRefGoogle Scholar
Shipboard Scientific Party (2003b) Site 1231. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 201 (eds D’Hondt, SL, Jørgensen, BB, Miller, DJ, Aiello, IW, Belkins, B, Blake, R, Cragg, BA, Cypionka, H, Dickens, GR, Ferdelman, T, Ford, K, Gettemy, GL, Guèrin, G, Hinrichs, K-U, Holm, N, House, C, Inagaki, F, Meister, P, Mitterer, RM, Naehr, T, Niitsuma, S, Parkes, RJ, Schippers, A, Skilbeck, CG, Smith, DC, Spivack, AJ, Teske, A and Wiegel, J), pp. 164. College Station, Texas. doi: 10.2973/odp.proc.ir.201.112.2003.CrossRefGoogle Scholar
Southard, JB, Young, RA and Hollister, CD (1971) Experimental erosion of calcareous ooze. Journal of Geophysical Research (1896–1977) 76, 5903–9. doi: 10.1029/JC076i024p05903.CrossRefGoogle Scholar
Stein, CA and Stein, S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–9. doi: 10.1038/359123a0.CrossRefGoogle Scholar
Stow, DAV, Faugères, J-C, Gonthier, E, Cremer, M, Llave, E, Hernández-Molina, FJ, Somoza, L and Díaz-Del-Río, V (2002) Faro-Albufeira drift complex, northern Gulf of Cadiz. In Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (eds Stow, DAV, Pudsey, CJ, Howe, JA, Faugères, J-C and Viana, AR), pp. 137–54. Geological Society of London, Memoirs no. 22. doi: 10.1144/gsl. Mem.2002.022.01.11.Google Scholar
Stow, D, Smillie, Z, Pan, J and Esentia, I (2019) Deep-sea contourites: sediments and cycles. In Encyclopedia of Ocean Sciences (Third Edition) (eds Cochran, JK, Bokuniewicz, HJ and Yager, PL), pp. 111–20. Oxford: Academic Press. doi: 10.1016/B978-0-12-409548-9.10879-6.CrossRefGoogle Scholar
Talley, LD (2013) Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 8097. doi: 10.5670/oceanog.2013.07.CrossRefGoogle Scholar
Tiedemann, R and Mix, A (2007) Leg 202 synthesis: southeast Pacific paleoceanography. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 202 (eds Tiedemann, R, Mix, AC, Richter, C and Ruddiman, WF), pp. 1–56. College Station, Texas. doi: 10.2973/odp.proc.sr.202.201.2007.CrossRefGoogle Scholar
Thran, AC, Dutkiewicz, A, Spence, P and Müller, RD (2018) Controls on the global distribution of contourite drifts: insights from an eddy-resolving ocean model. Earth and Planetary Science Letters 489, 228–40. doi: 10.1016/j.epsl.2018.02.044.CrossRefGoogle Scholar
Tsuchiya, M and Talley, LD (1998) A Pacific hydrographic section at 88°W: water-property distribution. Journal of Geophysical Research 103, 12899–918. doi: 10.1029/97JC03415.CrossRefGoogle Scholar
Vail, PR, Todd, RG and Sangree, JB (1977) Seismic stratigraphy and global changes of sea level, part 5: chronostratigraphy significance of seismic relations. In Seismic Stratigraphy – Applications to Hydrocarbon Exploration (ed. Payton, CE), pp. 99116. American Association of Petroleum Geologists Memoir no. 26. doi: 10.1306/M26490C8.Google Scholar
Velde, B (1996) Compaction trends of clay-rich deep sea sediments. Marine Geology 133, 193201. doi: 10.1016/0025-3227(96)00020-5.CrossRefGoogle Scholar
von Huene, R, Pecher, IA and Gutscher, M-A (1996) Development of the accretionary prism along Peru and material flux after subduction of Nazca Ridge. Tectonics 15, 1933. doi: 10.1029/95TC02618.CrossRefGoogle Scholar
von Humboldt, A (1816) Voyage aux régions équinoxiales du Nouveau Continent fait en 1799, 1800, 1801, 1802, 1803 et 1804, par Al. De Humboldt et A. Bonpland, rédigé par Alexandre de Humboldt, avec un atlas géographique et physique, Tome Second. Paris: Librairie Greque–Latine–Allemande, 382 pp.Google Scholar
Wold, CN (1994) Cenozoic sediment accumulation on drifts in the northern North Atlantic. Paleoceanography 9, 917–41. doi: 10.1029/94PA01438.CrossRefGoogle Scholar
Wolfe, CJ, McNutt, MK and Detrick, RS (1994) The Marquesas archipelagic apron: seismic stratigraphy and implications for volcano growth, mass wasting, and crustal underplating. Journal of Geophysical Research: Solid Earth 99, 13591–608. doi: 10.1029/94JB00686.CrossRefGoogle Scholar
Wright, NM, Seton, M, Williams, SE and Müller, RD (2016) The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Science Reviews 154, 138–73. doi: 10.1016/j.earscirev.2015.11.015.CrossRefGoogle Scholar
Yu, X, Stow, D, Smillie, Z, Esentia, I, Brackenridge, R, Xie, X, Bankole, S, Ducassou, E and Llave, E (2020) Contourite porosity, grain size and reservoir characteristics. Marine and Petroleum Geology 117, 104392. doi: 10.1016/j.marpetgeo.2020.104392.CrossRefGoogle Scholar
Zachos, J, Pagani, M, Sloan, L, Thomas, E and Billups, K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292, 686–93. doi: 10.1126/science.1059412.CrossRefGoogle ScholarPubMed
Supplementary material: File

Calvès et al. supplementary material

Figure S1

Download Calvès et al. supplementary material(File)
File 54 MB
Supplementary material: File

Calvès et al. supplementary material

Figure S2

Download Calvès et al. supplementary material(File)
File 43 MB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Nazca Drift System – palaeoceanographic significance of a giant sleeping on the SE Pacific Ocean floor
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Nazca Drift System – palaeoceanographic significance of a giant sleeping on the SE Pacific Ocean floor
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Nazca Drift System – palaeoceanographic significance of a giant sleeping on the SE Pacific Ocean floor
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *