Skip to main content Accessibility help
×
Home

Power of quantitative trait locus mapping for polygenic binary traits using generalized and regression interval mapping in multi-family half-sib designs

  • HAJA N. KADARMIDEEN (a1) (a2), LUC L. G. JANSS (a3) and JACK C. M. DEKKERS (a4)

Abstract

A generalized interval mapping (GIM) method to map quantitative trait loci (QTL) for binary polygenic traits in a multi-family half-sib design is developed based on threshold theory and implemented using a Newton–Raphson algorithm. Statistical power and bias of QTL mapping for binary traits by GIM is compared with linear regression interval mapping (RIM) using simulation. Data on 20 paternal half-sib families were simulated with two genetic markers that bracketed an additive QTL. Data simulated and analysed were: (1) data on the underlying normally distributed liability (NDL) scale, (2) binary data created by truncating NDL data based on three thresholds yielding data sets with three different incidences, and (3) NDL data with polygenic and QTL effects reduced by a proportion equal to the ratio of the heritabilities on the binary versus NDL scale (reduced-NDL). Binary data were simulated with and without systematic environmental (herd) effects in an unbalanced design. GIM and RIM gave similar power to detect the QTL and similar estimates of QTL location, effects and variances. Presence of fixed effects caused differences in bias between RIM and GIM, where GIM showed smaller bias which was affected less by incidence. The original NDL data had higher power and lower bias in QTL parameter estimates than binary and reduced-NDL data. RIM for reduced-NDL and binary data gave similar power and estimates of QTL parameters, indicating that the impact of the binary nature of data on QTL analysis is equivalent to its impact on heritability.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Power of quantitative trait locus mapping for polygenic binary traits using generalized and regression interval mapping in multi-family half-sib designs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Power of quantitative trait locus mapping for polygenic binary traits using generalized and regression interval mapping in multi-family half-sib designs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Power of quantitative trait locus mapping for polygenic binary traits using generalized and regression interval mapping in multi-family half-sib designs
      Available formats
      ×

Copyright

Corresponding author

Corresponding author.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed