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Summary

A generalized interval mapping (GIM) method to map quantitative trait loci (QTL) for binary

polygenic traits in a multi-family half-sib design is developed based on threshold theory and

implemented using a Newton–Raphson algorithm. Statistical power and bias of QTL mapping for

binary traits by GIM is compared with linear regression interval mapping (RIM) using simulation.

Data on 20 paternal half-sib families were simulated with two genetic markers that bracketed an

additive QTL. Data simulated and analysed were: (1) data on the underlying normally distributed

liability (NDL) scale, (2) binary data created by truncating NDL data based on three thresholds

yielding data sets with three different incidences, and (3) NDL data with polygenic and QTL

effects reduced by a proportion equal to the ratio of the heritabilities on the binary versus NDL

scale (reduced-NDL). Binary data were simulated with and without systematic environmental

(herd) effects in an unbalanced design. GIM and RIM gave similar power to detect the QTL and

similar estimates of QTL location, effects and variances. Presence of fixed effects caused differences

in bias between RIM and GIM, where GIM showed smaller bias which was affected less by

incidence. The original NDL data had higher power and lower bias in QTL parameter estimates

than binary and reduced-NDL data. RIM for reduced-NDL and binary data gave similar power

and estimates of QTL parameters, indicating that the impact of the binary nature of data on QTL

analysis is equivalent to its impact on heritability.

1. Introduction

Statistical methods to map loci affecting quantitative

traits (quantitative trait loci, QTL) in animal and

plant populations have been thoroughly addressed for

traits whose phenotypes follow a continuous dis-

tribution (e.g. Haley & Knott, 1992; Knott et al.,

1996). In many cases, however, phenotypes are poly-

chotomized into two or more categories, representing

binary (e.g. healthy versus diseased) and categorical

traits, respectively. The use of linear models, ap-

propriate for continuous traits, has several limitations
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for the analysis of categorical or binary traits,

including the need to restrict predictions to be within

the bounds of probability and the presence of heter-

ogeneous (error) variance on the observed scale

(Gianola, 1982).

A theoretically appropriate statistical analysis of

categorical traits is based on threshold theory (Demp-

ster & Lerner, 1950; Gianola, 1982). Threshold

models, or the nearly equivalent logistic regression

models in a generalized linear model (GLM) frame-

work, have been used for identification and mapping

of QTL affecting categorical traits (Hackett & Weller,

1995; Xu & Atchley, 1996; Visscher et al., 1996;

Rebai, 1997; Rao & Xu, 1998). All these studies

considered data from line crosses, and generally found

negligible to small benefits of the non-linear model

over the use of a linear model for analysis of discrete

data, either as less bias in parameter estimates (Hackett
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& Weller, 1995) or increased power (Rao & Xu, 1998).

Others, however, reported no differences between the

two methods (Visscher et al., 1996; Rebai, 1997).

Yi & Xu (1999a) developed a threshold model with

heterogeneous error variance for mapping QTL for

binary traits in multiple full-sib families based on

Fisher’s scoring algorithm. They reported that their

method is powerful and provides accurate estimates of

QTL variances but did not provide a comparison of

their method to a linear model. Greater differences

between regression interval mapping (RIM) and

generalized interval mapping (GIM) may be expected

for multi-family half-sib designs than has been found

for inbred line crosses because mean incidences differ

between families and the relationship between effects

on the underlying liability and observed scale is non-

linear. Additional biases could be introduced in the

linear model when data are subject to systematic

environmental effects and families are cross-classified

with fixed effects in an unbalanced manner. The

analysis by GIM is on the underlying normal scale

and therefore QTL parameter estimates are expected

to be robust in the presence of family effects and fixed

effects. The evaluation of differences between RIM

and GIM for QTL mapping for binary traits in multi-

family half-sib designs with or without the presence of

fixed effects formed the first objective of this study.

Earlier studies (Xu & Atchley, 1996; Rebai, 1997;

Yi & Xu 1999a) reported loss of information for QTL

mapping for binary data compared with normally

distributed data. Robertson & Lerner (1949) derived

the amount of genetic information that is present in

phenotypes on the binary versus normal scale, by

relating heritabilities on the binary and normal scales.

The second objective, therefore, was, to investigate

whether this same principle applies to QTL effects on

the binary versus normal scales.

2. Materials and methods

(i) The genetic and experimental model

Consider S unrelated half-sib families. Sire i is

randomly mated to n
i
unrelated dams resulting in n

i

offspring. Let N be the total number of progeny across

all sires. Binary phenotypes and marker data are

available on the offspring and marker data on the

sires. Dams may or may not have marker genotype

information. Marker genotype information from two

co-dominant polymorphic genetic marker loci, M and

N, with known recombination rate θ, is considered.

Markers M and N flank an additive QTL with alleles

Q
"

and Q
#

and QTL substitution effect (Falconer &

Mackay, 1996) denoted as a
n
on the underlying normal

scale and a
p

on the observed binomial scale. The

recombination rate of the QTL is r
"

with M and r
#

with N. Haldane’s (1919) mapping function (no

interference) is assumed. All sires are assumed to be

heterozygous for marker loci, with genotypes denoted

by M
"
N

"
}M

#
N

#
, but can have any one of the three

QTL genotypes at the QTL, i.e. Q
"
Q

"
, Q

"
Q

#
or Q

#
Q

#
.

The QTL allele that is in coupling phase with allele M
"

is denoted by QM
"
.

(ii) Threshold model

The theory for analysis of categorical traits based on

a threshold model was addressed by Dempster &

Lerner (1950), Gianola (1982), Gianola & Foulley

(1983) and Falconer & Mackay (1996). Let y
ijk

be a

binary response variable observed on offspring k in

sire family i and herd j. Threshold theory assumes that

y
ijk

results from an underlying continuous variable

z
ijk

, called liability (Dempster & Lerner, 1950), that is

normally distributed with mean µ
ijk

and variance σ#

and that liability is a linear combination of genetic

and systematic and random environmental effects

(Dempster & Lerner, 1950; Gianola & Foulley, 1983).

There is a fixed category threshold, T, such that y
ijk

¯
1 if z

ijk
"T and y

ijk
¯ 0 if z

ijk
%T. Note that T is a

‘population parameter ’ which is the same across all

offspring, families and fixed effects.

With the presence of systematic environmental

effects (herd), QTL and polygenic effects, a linear

model for liability in a multi-family half-sib design

can be specified as:

z
ijk

¯β
oi
­h

j
­β

i
c
ijk

­e
ijk

, (1)

with i¯1, 2,…, s, j¯1, 2,…,r and k¯1, 2,…,m ;

where z
ijk

is the liability of the kth offspring in the jth

herd from the ith sire family, β
oi

is the mean for the ith

sire family, h
j
is the fixed effect of herd j, β

i
is the QTL

substitution effect for the ith sire, c
ijk

is the conditional

probability of transmission of allele Q
M"

from the ith

sire to the kth offspring in the jth herd, and e
ijk

is a

residual,with e
ijk

CN(0,σ#). Liability z
ijk

is distributed

N(µ
ijk

,σ#
e
) with µ

ijk
¯β

oi
­h

j
­β

i
c
ijk

. The conditional

probabilities for QTL allele transmission from sire to

offspring (c
ijk

) were assigned based on the method

described in Liu & Dekkers (1998). Because σ
e

is

unidentifiable in threshold models, σ
e
can be set at any

arbitrary value (here, σ
e
¯1).

The probability for the ijkth observation being

scored as y
ijk

¯1, given the mean, herd effect and

QTL coefficient c
ijk

, is

(π
ijk

rµ
ijk

)¯&
¢

zijk=T

#(z
ijk

rµ
ijk

) ¦z
ijk

¯1®Φ(T®µ
ijk

)¯1®Φ(t)¯Φ(µ
ijk

), (2)

where t¯ (T®µ
ijk

) is the standardized threshold point

for a standard normal distribution, #(.) is the normal

probability density function and Φ(.) is the normal

cumulative density function. Equation (2) holds when
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T and the variance of z
ijk

are arbitrarily set to 0 and

1, respectively.

(iii) Generalized inter�al mapping (GIM)

(a) Model and likelihood. The liability model for

binary observations (eq. 1) written in matrix notation

is

z¯Xb­e,

where z
N×"

is a vector of liabilities for the observations,

X
N×(#S+r)

is a design matrix and b
(#S+r)×"

is the solution

vector and e
N×"

is a vector of random error terms.

Let b«¯ (β
o"

,β
o#

,…,β
oS

, h
"
, h

#
,…, h

r
,β

"
,β

#
,…,β

s
)«.

The log-likelihood for the binomial distribution of

observations from S unrelated sire families, L, can be

written, based on principles outlined in Gianola &

Foulley (1983), as the sum of the log-likelihood for

each offspring over all families and herds:

L¯ 3
S

i="

3
r

j="

3
m

k="

[y
ijk

ln(π
ijk

)­(1®y
ijk

) ln(1®π
ijk

)]. (3)

Here π
ijk

is the probability that y
ijk

¯1 and 1-π
ijk

is

the probability that y
ijk

¯ 0 given the parameter

vector b (β
oi
, h

j
,β

i
). From equation (2), π

ijk
is Φ(µ

ijk
)

with µ
ijk

¯E(z
ijk

r b)¯β
oi
­h

j
­β

i
c
ijk

. Note that the

contribution of the ijkth observation to the log-

likelihood involves only one of the two terms in

equation (3), depending on whether y
ijk

is equal to 1

or 0. Also, note that the QTL position, r
"
, enters into

the computation of the probability of y
ijk

¯1 (π
ijk

;

equation 2) and, hence, into the log-likelihood (eq. 3),

through the conditional probability of QTL allele

transmission c
ijk

, which is a function of assumed QTL

position r
"
.

(b) Parameter estimation. Parameters were estimated

as the joint maximum a posteriori likelihood (MAP;

see Gianola & Foulley, 1983) of β
oi
’s, h

j
’s, β

i
’s and r

"
.

The maximum is found in a two-step procedure: first,

given a value for r
"
, the maximum is located with

respect to β
oi
’s, h

j
’s and β

i
’s using a Newton–Raphson

algorithm (see Appendix) and the corresponding

likelihood (equation 3) is computed. Then a one-

dimensional grid-search is performed with regard to r
"

(based on varying QTL positions at 1 cM intervals).

The position with the highest global likelihood

provides the estimate of QTL location. Estimates of β
i

and h
j

at this position are then taken as the best

estimates of QTL substitution and herd effects,

respectively.

An estimate of QTL variance (σ#
Q
) was computed as

σ#
Q
¯σ#

β®PEVβ, (4)

where σ#
β is the variance of ‘best ’ estimates of QTL

substitution effects (β
i
) across sires and PEVβ is the

average prediction error variance of QTL substitution

effects (see Appendix) for the best fitting model.

(c) Test of significance for presence of a QTL. Under

the null hypothesis of β
i
¯ 0 for all i, the log-

likelihood of a reduced model (L
red

) with only family

means, β
oi
, and herd effects, h

j
, is maximized with π

ijk

¯Φ(β
oi
­h

j
) :

L
red

¯ 3
S

i="

3
r

j="

3
m

k="

[y
ijk

ln(π
ijk

)­(1®y
ijk

) ln(1®π
ijk

)].

The likelihood ratio (LR) test statistic for testing for

presence of a QTL in the marker bracket is :

LR¯ 2[L
full

®L
red

],

where L
full

is the likelihood under the alternative

hypothesis (β
i
1 0 for at least one i), which is given in

equation (3).

(iv) Regression inter�al mapping (RIM)

The linear regression model fitted to binary obser-

vations y
ijk

with fixed herd effects, was:

y
ijk

¯β
oi
­h

j
­β

i
c
ijk

­e
ijk

, (5)

with all terms as described earlier and implemented

using interval mapping as described by Knott et al.

(1996). An estimate of QTL variance was computed

based on equation (4) with PEVβ computed as shown

in the Appendix. To test for significance of the

presence of a QTL in the marker bracket, the LR test

statistic was computed as:

LR¯N ln(RSS
red

}RSS
full

),

where RSS
red

was obtained from fitting a model with

family means and herd effects under the null hy-

pothesis, β
i
¯ 0 for all i, and RSS

full
was obtained

from fitting the full model (equation 5) under the

alternative hypothesis, β
i
1 0 for at least one i.

(v) Simulation

(a) Genetic data. Twenty paternal half-sib families

were simulated. All sires were heterozygous for

markers M and N, which had a spacing of 20 cM. The

QTL was 15 and 5 cM from M and N. Sires were

either homozygous or heterozygous at the QTL based

on allele frequencies equal to 0±5. Marker-QTL

(MQTL) haplotypes produced by the sires were

sampled according to their expected frequencies of

transmission. Maternal marker haplotypes were

sampled based on population frequencies (0±5 for all

alleles).

(b) Phenotypic data: Binary data with fixed effects.

Phenotypic values of offspring were first generated on
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the NDL scale according to model (1) with c
ijk

sampled from a binomial distribution with frequency

0±5. Residuals were sampled from N[0,σ#
p
®(0±25σ#

u
­

σ#
h
­0±5σ#

QTL
)], where σ#

p
is the phenotypic variance, σ#

u

is the polygenic variance, σ#
h

is the herd variance and

σ#
QTL

is the population QTL variance, assuming equal

frequency for QTL alleles. A total heritability,

including QTL effects, of 0±25 on the NDL scale was

used in all cases. Polygenic sire effects were sampled

from N[0, 0±25σ#
u
]. One fixed herd effect with five levels

was simulated. Herd effects were sampled from N[0,

σ#
h
] where σ#

h
is the herd variance which was set equal

to 40% of the total phenotypic variance on the NDL

scale. The distribution of progeny across the five herds

was non-random for 5 sires and random for 15 sires.

Non-random distribution of progeny was simulated

by assigning offspring of a given sire family to one of

the 5 herds based on a multinomial distribution with

frequencies given in Table 1. The remaining 15 sire

families were randomly distributed across 5 herds.

Liability values of offspring (z
ijk

’s) were stan-

dardized by z$
ijk

¯ (z
ijk

®m
z
)}s

z
where m

z
is the mean

and s
z
is the standard deviation of the liability data for

a given replicate. Standardized liability values were

transformed into observable 0–1 binary phenotypes

(y
ijk

) using the same standardized threshold point (t)

for all offspring, families and herds. Differences in

incidence between sires and between herds were,

therefore, generated by applying the same ‘ t ’ for all N

offspring across all sire by herd sub-classes but letting

polygenic and herd effects differ across families and

herds.

(c) Phenotypic data: NDL, reduced-NDL and binary

data without fixed effects. All data were simulated

without fixed effects to test for prediction of loss of

information from NDL to binary data, and to be able

to compare binary data with and without fixed effects.

Let subscript ij denote the j th progeny in the i th

family. First, the underlying NDL data (z
ij
) without

fixed effects were simulated as described previously

except that the herd effect was not simulated. Then the

same underlying NDL data (z
ij
) were used to generate

two types of data, viz. reduced-NDL and binary data

(y
ij
). The reduced-NDL data were generated by

reducing the variance contributed by polygenic and

QTL effects by a factor R, which, following Robertson

& Lerner (1949), was set equal to

R¯
η#

p(1®p)
, (6)

where η is the height of the ordinate of the standard

normal distribution at threshold t corresponding to

population incidence p. This was accomplished by

multiplying polygenic (u
i
) and QTL (q

ij
) effects in

the liability model, z
ij
¯ u

i
­q

ij
­e

ij
, by oR and

by sampling environmental effects from N[0,σ#
p
®

(0±25σ#
u
\R­0±5σ#

QTL
\R)].

(d ) Parameters for simulations. Binary datasets were

simulated for population incidences p, equal to

0±15, 0±25 and 0±50, corresponding to standardized

thresholds t equal to 1±04, 0±67 and 0±00 and for the

number of offspring per sire n, equal to 100 and 500.

For the reduced-NDL data, the values of R were 0±42,

0±53 and 0±63 for incidences of 0±15, 0±25 and 0±50,

respectively. The QTL effect on the underlying NDL

scale was equal to 0±30 phenotypic standard deviation

units (σ¯1) for all data and combinations.

(e) Parameter estimation and significance threshold

�alues. The empirical mean and standard deviation of

parameter estimates were obtained by averaging

estimates over 1000 replicates. Comparison of RIM

and GIM methods for binary data was based on

power to detect a QTL and bias and accuracy of QTL

parameter estimates. Statistical power was calculated

as the proportion of replicates in which the LR test

statistic was higher than the significance threshold

value. Significance threshold values were determined

empirically from data generated under the null

hypothesis β
i
¯ 0 for all i based on 10000 replicates of

data for each combination of parameters.

( f ) Test of unbiasedness of estimates of QTL effects.

Estimates of QTL substitution effects by sire were

regressed on their true values to test for unbiasedness,

as described in Liu & Dekkers (1998). A regression

coefficient equal to 1 indicates unbiasedness. For

binary data with and without fixed effects, the true

QTL effect of the i th sire on the probability scale (a
ip
)

was computed based on the sire’s true polygenic mean

(u
i
) and the true QTL effect on the standardized NDL

scale (a
n
) as

a
ip

¯Φ9t$i ­
a
n

2 :®Φ9t$i ®
a
n

2 : , (7)

where t$
i
¯ (t®u

i
).

RIM estimates for binary data with and without

fixed effects were also tested for unbiasedness on the

normal scale by first transforming estimates of QTL

substitution effects for each sire (β
pi
) to the normal

scale (β
ni
). This transformation was based on the

method described for backcross designs by Visscher et

al. (1996):

β
ni

¯Φ−"[1®β
opi

]®Φ−"[1®(β
opi

­β
pi
)], (8)

where β
opi

is the estimated mean on the probability

scale in family i and Φ−"(Ψ) is the inverse normal

cumulative density function of the argument Ψ. In

case of fixed effects, the transformation of QTL
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Table 1. Frequencies of offspring per herd used for non-random

distribution of fi�e sire families across herds for QTL inter�al mapping

for a binary trait with fixed herd effects

Herd

Sire family

1 4 7 14 20

1 0±40 0±10 0±10 0±15 0±15
2 0±20 0±50 0±20 0±15 0±10
3 0±10 0±10 0±35 0±10 0±10
4 0±10 0±10 0±20 0±45 0±10
5 0±20 0±20 0±15 0±15 0±55

Diagonals (in bold) indicate which sire family is predominant.

substitution effects on the probability scale (β
pi
) to the

NDL scale (β
ni
) varied between herds. Hence mean

incidence within a family was used to transform

estimates of β
pi

to β
ni
. The RIM estimates of QTL

substitution effects for reduced-NDL data for each

sire (β
ri
) were regressed on their true values on the

reduced-NDL scale (based on a
n
oR).

3. Results

(i) Comparison of GIM with RIM for binary data

with fixed effects

(a) Significance thresholds. For each incidence (p) by

progeny group size (n) combination, empirical

Table 2. Empirical significance threshold �alues for the LR test for QTL inter�al mapping for a binary trait in

20 sire families based on linear regression (RIM) and threshold (GIM) models for different incidences and

progeny group sizes (n)". Results are based on 10000 replicates of binary data with fixed effects

Significance
level n

Incidence¯ 0±15 Incidence¯ 0±25 Incidence¯ 0±50

χ#

#!
RIM GIM RIM GIM RIM GIM

1% 100 42.4a 41±9a 40±5a 40±5a 40±9a 40±8a 37±57
(0±021) (0±021) (0±023) (0±021) (0±024) (0±024)

500 41±1a 39±4a 40±0a 40±2a 40±6a 40±4a

(0±022) (0±021) (0±019) (0±019) (0±021) (0±021)

5% 100 35±2a 35±4a 35±1a 35±2a 34±8a 34±1a 31±41

(0±095) (0±095) (0±101) (0±101) (0±101) (0±100)
500 34±1a 33±6a 33±6a 33±6a 33±9a 33±8a

(0±093) (0±091) (0±085) (0±085) (0±087) (0±084)

10% 100 31±9a 32±0a 31±4a 31±5a 31±2a 31±3a 28±41

(0±171) (0±171) (0±173) (0±174) (0±174) (0±174)
500 31±0a 30±4a 30±7a 30±7a 30±8a 30±8a

(0±166) (0±165) (0±159) (0±160) (0±165) (0±165)

χ#

#!
is a chi-square with 20 degrees of freedom. Values in parentheses are expected probabilities of type I error when χ#

#!
table

significance values are used instead of empirical significance threshold values#.
" Comparisons are based on a chi-square test for test of significance of a binomial proportion (Snedecor & Cochran, 1982)
using RIM significance values for GIM and counting number of replicates of GIM falling above or below the significance
threshold values of the RIM and comparing these with expected numbers at a given significance level.
# Computed as the number of replicates (under the null hypothesis) with test statistics greater than the χ#

#!
table significance

values divided by the total number of replicates (10000) at a given significance level.
a Values with the same superscript within a combination of progeny group size by incidence parameters at a given
significance level are not significantly different (P" 0±005).

threshold values are given in Table 2. Significance

threshold values were not significantly different for

RIM and GIM for any combination. For both

methods, significance threshold values tended to be

similar across incidences and progeny group sizes.

The probabilities of committing a type I error (P

values) when χ#

#!
table significance values (taken from

Snedecor & Cochran, 1982) are used instead of

empirical significance threshold values are also given

in parentheses in Table 2. Empirical threshold values

were higher than χ#

#!
table values for all combinations.

For a given significance level (1%, 5% or 10%), the

P values obtained with χ#

#!
table threshold values were

much higher than those for empirical threshold values

https://doi.org/10.1017/S001667230000481X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230000481X


H. N. Kadarmideen et al. 310

Table 3. Empirical power at 1% and 5% le�els of significance for QTL inter�al mapping for a binary trait

with a QTL effect of 0±3" based on linear regression (RIM) and threshold models (GIM) for different

incidences and progeny group sizes (n)#. Correlations between LR test statistics of two methods are also gi�en.

Results are based on 1000 replicates of binary data with fixed effects

n
Significance
level

Incidence¯ 0±15 Incidence¯ 0±25 Incidence¯ 0±50

RIM GIM RIM GIM RIM GIM

100 1% 15±1a 15±3a 20±7a 20±8a 24±5a 24±2a

5% 27±4a 28±8a 35±1a 34±9a 48±0a 48±9a

500 1% 87±0a 87±3a 94±9a 94±2a 98±2a 98±5a

5% 95±6a 95±9a 98±6a 98±4a 99±3a 99±0a

Correlations between LR test statistics
100 0±934 0±967 0±996
500 0±959 0±974 0±998

" QTL effect on the underlying normal scale in phenotypic standard deviations.
# Comparisons are based on a chi-square test for comparison of proportions in paired samples (Snedecor & Cochran, 1982)
a Values with the same superscript within a combination of progeny group size by incidence parameters at a given
significance level are not significantly different ; P" 0±005.

Table 4. Mean and standard de�iation (in parentheses) of estimates of

QTL location* (in centimorgans from the left marker locus) for QTL

inter�al mapping for a binary trait with a QTL effect of 0±3" based on

linear regression (RIM) and threshold models (GIM) for different

incidences and progeny group sizes (n). Results are based on 1000

replicates of binary data with fixed effects

n

Incidence¯ 0±15 Incidence¯ 0±15 Incidence¯ 0±15

RIM GIM RIM GIM RIM GIM

100 10±9a 10±9a 12±1a 12±4a 12±6a 12±6a

(8±7) (8±7) (8±1) (8±0) (7±9) (7±9)

500 14±2a 14±1a 14±3a 14±3a 14±5a 14±5a

(5±7) (5±6) (5±0) (5±0) (4±4) (4±4)

The true location of the QTL was 15 cM from the left marker locus. Distance
between marker loci was 20 cM.
" QTL effect on the underlying normal scale in phenotypic standard deviations.
* All estimates significantly different from the true QTL location; P! 0±001.
a Values with the same superscript within a combination of progeny group size by
incidence parameters are not significantly different (P" 0±005) and comparisons
of methods are based on pairwise t-test.

in all situations. This indicates that the use of table

values in this application would lead to too liberal a

test.

(b) Power and LR test statistics. Empirical power to

detect the QTL and correlations between LR test

statistics under the alternative hypothesis for RIM

and GIM are given in Table 3. None of the parameter

combinations revealed significant differences in power

between RIM and GIM. Power increased with

progeny group size and incidence from low to

intermediate for both methods. Correlations between

the LR test statistics for RIM and GIM were close to

unity. RIM and GIM produced not only very similar

significance threshold values under the null hypothesis

(Table 2) but also similar LR test statistics under the

alternative hypothesis. Correlations increased with

progeny group size and with an increase in incidence

from low to intermediate.

(c) QTL location. The empirical means and standard

deviations of estimates of QTL location are in Table

4. There were no significant differences between

estimates of QTL location from RIM and GIM for

any situation investigated. RIM and GIM estimates

of QTL location were significantly biased towards the
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Table 5. Empirical mean estimates of the QTL �ariance (¬10), with

empirical standard de�iations in parentheses, for QTL inter�al mapping

for a binary trait with a QTL effect of 0±3" based on linear regression

(RIM) and threshold models (GIM) for different incidences and progeny

group sizes (n). Results are based on 1000 replicates of binary data with

fixed effects

n Incidence RIM
True
value# GIM

True
value$

100 0±15 0±034 (0±036)* 0±025 0±98 (1±02)* 0±45
500 0±031 (0±015)* 0±025 0±71 (0±37)* 0±45

100 0±25 0±061 (0±055)* 0±045 0±94 (0±82)* 0±45
500 0±054 (0±025)* 0±045 0±68 (0±29)* 0±45

100 0±50 0±092 (0±069)* 0±072 0±89 (0±61)* 0±45
500 0±081 (0±040)* 0±072 0±60 (0±24)* 0±45

" QTL effect on the underlying normal scale in phenotypic standard deviations.
# True amount of phenotypic variance contributed by the QTL on the probability
scale for RIM.
$ True amount of phenotypic variance contributed by the QTL on the NDL scale
for GIM.
* Estimate significantly different from the true QTL variance; P! 0±001.

Table 6. Regression of estimates on true �alues for QTL effects of

indi�idual sires for QTL inter�al mapping for a binary trait with a QTL

effect of 0±3" based on linear regression (RIM) and threshold models

(GIM) for different progeny group sizes (n) and incidences. Results are

based on 1000 replicates of binary data with fixed effects

n Incidence

RIM
(probability
scale)

RIM
(NDL scale)

GIM
(NDL scale)

100 0±15 0±83* 1±09* 1±06*
500 0±96* 1±34* 1±04*

100 0±25 0±92* 1±36* 1±05*
500 1±39* 1±44* 1±03*

100 0±50 0±96* 1±21* 1±00
500 1±01* 1±48* 1±02*

" QTL effect on the underlying normal scale in phenotypic standard deviations.
* Significantly different from 1 at 0±001 significance.

middle of the bracket by 0±5 cM to 4±1 cM. Large

progeny group size and higher incidence, up to 50%,

generally reduced the bias in estimates of QTL

location.

Frequency distributions of estimates of QTL lo-

cation within a marker bracket were similar for RIM

andGIM(results not shown). TheQTLwas positioned

more frequently at the right marker locus than at the

left marker locus for all situations. In general, the

QTL was positioned at markers more frequently when

the power was low.

(d ) QTL �ariance. Empirical means of estimates of

QTL variances and their empirical standard deviations

across 1000 replicates are given in Table 5. True QTL

variance on the NDL scale was computed based on

true QTL effects on the NDL scale as 0±5a#
n
. True QTL

variance on the probability scale was computed based

on true QTL effects on the probability scale as 0±5a#
p

with a
p

derived from equation (7). In general, both

RIM and GIM significantly overestimated the QTL

variance. Bias and standard deviations of estimates of

QTL variances were lower when family size was large

and when incidence approached 50%. Estimates of

QTL variances obtained from RIM and GIM were on

different scales and could not be compared.

(e) Test of unbiasedness of estimates of QTL effects.

Estimates of QTL effects were significantly biased

(Table 6). For RIM, per cent bias ranged from ®17%

to ­39% on the probability scale and from 9% to

48% on the NDL scale. For the GIM method, per
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Table 7. Empirical significance threshold �alues for the LR test for QTL inter�al mapping for a binary trait in

20 sire families based on linear regression (RIM) and threshold (GIM) models for different incidences and

progeny group sizes (n)". Results are based on 10000 replicates of binary data without fixed effects

Significance
Incidence¯ 0±15 Incidence¯ 0±25 Incidence¯ 0±50

level n RIM#
n

RIM$
r

RIM%
b

GIM RIM
r

RIM
b

GIM RIM
r

RIM
b

GIM χ#

#!

1% 100 40±6a 40±7a 42±2b 42±0bc 40±3ac 40±2ab 40±5bc 40±7ac 41±0ab 40±9bc 37±57
(0±021) (0±021) (0±021) (0±021) (0±021) (0±025) (0±025) (0±021) (0±026) (0±026)

500 40±0a 40±0a 41±7b 37±9c 40±0ac 41±5ab 39±3bc 40±0ac 40±3ab 40±0bc

(0±023) (0±023) (0±023) (0±020) (0±023) (0±023) (0±023) (0±023) (0±025) (0±024)
5% 100 34±1a 34±4a 35±1b 35±0bc 34±4ac 34±6ab 34±4bc 34±4ac 34±2ab 34±5bc 31±41

(0±085) (0±085) (0±088) (0±088) (0±085) (0±096) (0±092) (0±085) (0±102) (0±097)
500 33±6a 33±6a 34±8ab 31±7c 33±6ac 34±6ab 33±5bc 33±6ac 33±9ab 33±7bc

(0±092) (0±092) (0±095) (0±087) (0±092) (0±095) (0±092) (0±092) (0±096) (0±093)
10% 100 31±1a 31±1a 31±7ab 31±9bc 31±3ac 31±2ab 31±1bc 31±1ac 31±2ab 31±2bc 28±41

(0±159) (0±159) (0±162) (0±162) (0±159) (0±171) (0±169) (0±159) (0±179) (0±179)
500 30±7a 30±6a 31±5b 28±6c 30±6ac 31±2ab 30±5bc 30±6ac 30±9ab 30±6bc

(0±170) (0±170) (0±178) (0±161) (0±170) (0±176) (0±171) (0±170) (0±174) (0±172)

χ#

#!
is a chi-square with 20 degrees of freedom. Values in parentheses are expected probabilities of type I error when χ#

#!
table

significance values are used instead of empirical significance threshold values&.
a,b, c Values with the same superscript within a combination of progeny group size by incidence parameters at given a
significance level are not significantly different ; P" 0±005.
" Comparisons between methods are as explained in Table 2.
# RIM

n
RIM applied to NDL data.

$ RIM
r
RIM applied to reduced-NDL data.

% RIM
b

RIM applied to binary data.
& Computation of values is explained in Table 2.

Table 8. Empirical power at 1% and 5% le�els of significance for QTL inter�al mapping for a binary trait

with a QTL effect of 0±31 based on linear regression (RIM) and threshold models (GIM) for different incidences

and progeny group sizes (n)#. Results are based on 1000 replicates of binary data without fixed effects

Significance
Incidence¯ 0±15 Incidence¯ 0±25 Incidence¯ 0±50

n level RIM
n

RIM
r

RIM
b

GIM RIM
r

RIM
b

GIM RIM
r

RIM
b

GIM

100 1% 30±6a 6±1b 6±0b 5±10b 12±3b 11±8b 11±9b 12±3b 12±0b 11±9b

5% 52±7a 18±4b 18±2b 18±3b 24±5b 25±1b 25±8b 32±0b 31±1b 31±2b

500 1% 99±6a 72±5b 71±1b 71±3b 85±4b 84±9b 84±8b 90±8b 90±8b 90±9b

5% 100±0a 86±7b 88±4b 87±7b 93±4b 94±7b 95±0b 96±7b 97±3b 98±0b

RIM
n
, RIM

r
, RIM

b
: abbreviations explained in Table 7.

" QTL effect on the underlying normal scale in phenotypic standard deviations.
# Comparisons between methods are as explained in Table 3.
a,b Values with the same superscript within a combination of progeny group size by incidence parameters at a given
significance level are not significantly different ; P" 0±005.

cent bias ranged from 2% to 6%. GIM, therefore, has

smaller and less variable bias, and also is consistent in

always showing a (slight) overestimate.

(ii) Comparison of NDL, reduced-NDL and binary

data based on RIM (all without fixed effects)

(a) Significance threshold �alues. Empirical threshold

values for data without fixed effects are given in Table

7. Significance threshold values were not significantly

different between reduced-NDL and binary data,

except for p¯ 0±15. Significance threshold values did

not differ significantly between NDL and reduced-

NDL data in any situation. Similar to data with fixed

effects, the P-values (in parentheses) obtained when

χ#

#!
table threshold values were applied, were much

higher than those expected for empirical threshold

values in all situations.

(b) Power and LR test statistics. Empirical power to

detect QTL for all data is given in Table 8. Power was

not significantly different between binary and reduced-
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Table 9. Mean and standard de�iation (in parentheses) of estimates of QTL location* (in centimorgans from

the left marker locus) for QTL inter�al mapping with a QTL effect of 0±31 based on linear regression (RIM)

and threshold models (GIM) for different incidences and progeny group sizes (n). Results are based on 1000

replicates of binary data without fixed effects

Incidence¯ 0±15 Incidence¯ 0±25 Incidence¯ 0±50

n RIM
n

RIM
r

RIM
b

GIM RIM
r

RIM
b

GIM RIM
r

RIM
b

GIM

100 12±8 11±0b 11±4b 11±0b 11±3b 11±6b 11±7b 11±5b 11±6b 11±8b

(7±5) (8±7) (8±6) (8±6) (8±6) (8±7) (8±5) (8±4) (8±4) (8±3)
500 14±7 13±5b 13±5b 13±5b 13±9b 13±9b 13±9b 14±2b 14±1b 14±2b

(4±0) (6±4) (6±3) (6±3) (5±7) (5±7) (5±7) (5±3) (5±2) (5±2)

The true location of the QTL was 15 cM from the left marker locus. Distance between marker loci was 20 cM.
RIM

n
, RIM

r
, RIM

b
: abbreviations explained in Table 7.

" 1QTL effect on the underlying normal scale in phenotypic standard deviations.
* All estimates were significantly different from the true QTL location; P! 0±001, except for RIM

n
at n¯100.

a,b Values with the same superscript within a combination of progeny group size by incidence parameters are not significantly
different (P" 0±005) and comparisons of methods are based on a pairwise t-test.

Table 10. Empirical mean estimates of the QTL �ariance (¬10), with empirical standard de�iations in

parentheses, for QTL inter�al mapping with a QTL effect of 0±3" based on linear regression (RIM ) and

threshold models (GIM ) for different incidences (p) and progeny group sizes (n). Results are based on 1000

replicates of binary data without fixed effects

n RIM
n

P RIM
r

True
value# RIM

b

True
value$ GIM

True
value%

100 0±50 (0±36)* 0±15 0±24 (0±27)* 0±19 0±033 (0±039)* 0±025 0±72 (0±84)* 0±45
500 0±46 (0±16) 0±20 (0±10)* 0±19 0±027 (0±013)* 0±025 0±41 (0±21)* 0±45
100 0±25 0±29 (0±28)* 0±24 0±054 (0±057)* 0±045 0±64 (0±60)* 0±45
500 0±25 (0±12)* 0±24 0±048 (0±021)* 0±045 0±49 (0±20)* 0±45
100 0±50 0±33 (0±29)* 0±29 0±084 (0±076)* 0±072 0±63 (0±56)* 0±45
500 0±29 (0±13) 0±29 0±074 (0±031) 0±072 0±49 (0±18)* 0±45

RIM
n
, RIM

r
, RIM

b
: abbreviations explained in Table 7.

" QTL effect on the underlying normal scale in phenotypic standard deviations.
# True amount of phenotypic variance contributed by the QTL on the reduced-NDL scale for RIM

r
.

$ True amount of phenotypic variance contributed by the QTL on the probability scale for RIM
b
.

% True amount of phenotypic variance contributed by the QTL on the NDL scale for RIM
n

and GIM.
& Estimate significantly different from the true QTL variance; P! 0±001.

NDL data in any situation. However, power was

significantly higher for NDL data for all situations.

Power increasedwith progeny group size and incidence

from low to intermediate for all data. Mean LR test

statistics under the alternative hypothesis for binary

and reduced-NDL data were very similar and the

correlations between LR test statistics for binary and

reduced-NDL data were close to unity in all situations

(results not shown). Correlations between LR test

statistics for both binary and reduced-NDL data with

that of NDL data were low but increased with

progeny group size and with an increase in incidence

from low to intermediate (results not shown). Binary

and reduced-NDL data produced not only very similar

significance threshold values under the null hypothesis

(Table 7) but also similar LR test statistics under the

alternative hypothesis.

(c) QTL location. The empirical means and standard

deviations of estimates of QTL location are given in

Table 9. There were no significant differences between

estimates of QTL location from binary and reduced-

NDL data for any situation investigated. Mean

estimates of QTL location for binary and reduced-

NDL data were both significantly different (and

biased) from estimates obtained from NDL data, in

all situations. For NDL data, RIM estimates of QTL

location were unbiased, except for when progeny

group size was small. For large progeny group size

and intermediate incidence, mean estimates of QTL

location were close to the true location (15 cM) for all

data. The NDL data had a higher frequency of

estimates at or near the simulated location (15 cM)

than the reduced-NDL and binary data (results not

shown) for all combinations.
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Table 11. Regression of estimates on true �alues for QTL effects of

indi�idual sires for QTL inter�al mapping with a QTL effect of 0±3"

based on linear regression (RIM ) and threshold models (GIM ) for

different progeny group sizes (n) and incidences (P)

n

RIM
n

(NDL
scale) p

RIM
r

(reduced-NDL
scale)

RIM
b

(probability
scale)

RIM
b

(NDL
scale)

GIM
(NDL
scale)

100 1±00 0±15 0±97* 0±94* 1±13* 1±04
500 1±00 0±99* 0±95* 1±06* 0±95*
100 0±25 0±98* 0±99 1±07* 1±01

500 0±99* 1±04* 1±05* 1±03*
100 0±50 0±98* 1±06* 1±05* 1±04
500 1±00 1±10* 1±05* 1±05*

RIM
n
, RIM

r
, RIM

b
: abbreviations explained in Table 7.

" QTL effect on the underlying normal scale in phenotypic standard deviations.
# Significantly different from 1 at 0±001 significance.

(d ) QTL �ariance. Empirical means of estimates of

QTL variances and their empirical standard deviations

across 1000 replicates are given in Table 10. True

QTL variances on the reduced-NDL, probability and

the NDL scale are also in Table 10. True QTL

variances for the reduced-NDL scale were computed

based on the true QTL effects on the reduced-NDL

scale as 0±5(a
n
oR)#. In general, estimates of QTL

variance obtained for reduced-NDL and binary data

were both significantly biased upwards more than

estimates for NDL data. Estimates of QTL variances

obtained from different data were on different scales

and could not be compared.

(e) Test of unbiasedness of estimates of QTL effects.

Results for the test of unbiasedness of estimates of

QTL effects for all data are given in Table 11.

Estimates of QTL effects were significantly biased for

binary and reduced-NDL data. For RIM for binary

data, per cent bias ranged from ®6% to ­10% on

the probability scale and from 5% to 13% on the

NDL scale. For RIM for reduced-NDL data, esti-

mates were biased downwards by 3%. For RIM for

NDL data, estimates were unbiased. Also here, GIM,

compared with RIM for binary data, had smaller and

less variable bias (from ®5% to ­5%), confirming

the results from Table 6. However, differences between

the two approaches observed here are much lesser

than those observed in Table 6 and, therefore, must

have been largely caused by the inclusion of fixed

effects.

4. Discussion

In this study, methods to map a QTL affecting a

binary polygenic trait in multi-family half-sib designs

based on linear and threshold models were applied

to simulated data. Biologically and statistically, a

threshold model is more appropriate for traits that are

recorded on a binary scale and that have a polygenic

basis for their manifestation.

The threshold model of Gianola & Foulley (1983),

adopted here for QTL mapping, is closely related to

the GLM of McCullagh & Nelder (1989), which was

applied by Visscher et al. (1996) and Rao & Xu (1998)

for QTL mapping. The GIM method used here differs

from the above two studies in that parameters were

estimated as the joint maximum a posteriori (MAP)

and the Newton–Raphson (N-R) method was used to

find the MAP estimates (see Appendix) at each

putative QTL location. In our application with fixed

effects only, MAP equals maximum likelihood, but in

this Bayesian framework one or more random effects

can also be easily handled, as often incorporated in

animal breeding models. The algorithms used here

(and in Yi & Xu, 1999a, b) differ from the common

GLM (McCullagh & Nelder, 1989) in that the

maximization algorithms are based on second-order

derivatives, which converge quicker than the first-

order derivatives used in GLM, and also provide

standard errors for parameter estimates.

(a) Comparison of RIM and GIM methods for binary

data with and without fixed effects

Earlier studies (eg. Visscher et al., 1996; Rebai, 1997)

reported similarity of RIM and GIM for populations

derived from F1 intercross and backcross designs. A

backcross design is similar to a single half-sib family.

For multi-family half-sib designs, however, differences

between RIM and GIM were expected because of

differences in mean incidences between families.

Varying incidences among families were expected to

cause no bias for GIM because analysis is on the

underlying normal scale. In addition, the presence of

fixed effects in binary data was expected to introduce

additional biases with RIM because QTL mapping is

done within family but not within fixed effects. An
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unbalanced design was therefore considered in the

simulation to reflect, for example, the practice of using

better sires in better herds. However, although

unbalancedness was introduced (for 5 of the 20 sires),

no such association between QTL status and herd

mean was added.

Results showed that there were no significant

differences between RIM and GIM for data with or

without fixed effects, in terms of significance

thresholds, LR test statistics, power and bias of QTL

location estimates. For estimates of QTL effects,

differences in bias were found especially when fixed

effects were present. This suggests that benefits of

GIM (and threshold models in general) may be found

especially in the more complicated designs with

unbalanced and}or confounded effects. In our designs,

however, GIM was not able to convert this speculative

benefit into larger power. For most aspects, therefore,

our results expand the similarity of GIM and RIM

reported by Visscher et al. (1996), Xu & Atchley

(1996) and Rebai (1997) to multi-family half-sib

designs and presence of fixed effects.

Recently, Yi & Xu (1999b) proposed a random

model for QTL mapping for binary traits in multiple

full-sib families, in which they found the threshold

model to result in greater power to detect QTL than

the linear model. Yi & Xu (1999b) fitted families as

random rather than fixed effects which, along with a

number of other differences (e.g. design, genetic model

and likelihood, number and nature of genetic para-

meters, tests of hypothesis, and method of estimation

and approximation), may have contributed to the

better performance of the threshold model compared

with our analysis. The exact reasons for the differences

in results between Yi & Xu (1999b) and our study can

not be determined easily, but it is clear that other

situations may be found in which the threshold model

could be superior to the linear model, as would be

expected from theory.

Mean estimates of QTL location were found biased

towards the centre of the marker bracket in this study.

The magnitude of bias was related to power to detect

QTL (Tables 3, 8) ; bias was greater when the power

was low. Other studies have also found similar bias

(Visscher et al., 1996; Knott et al., 1996; Walling et

al., 1998). Using simulation, Visscher et al. (1996)

obtained unbiased estimates of QTL location for both

normal and binary data by averaging LR statistics for

each position across replicates and choosing the

position with the highest average LR statistics. With

interval mapping, an estimate of QTL location is

obtained from each replicate based on the position

with the highest LR for that replicate. When QTL

position was evaluated based on this criterion in our

simulation, an unbiased estimate (15 cM) was ob-

tained also for all parameter combinations and for all

data (results not shown). This implies that the bias

towards the centre of the marker bracket is due to the

non-linear relationship between QTL position and the

LR statistic. In practice, however, multiple replicates

are not available and the position with the largest and

significant test statistic in a given replicate must be

chosen.

(b) Comparison of NDL, reduced-NDL and binary

data (all without fixed effects)

The main interest in considering reduced-NDL data

was to test whether loss of information in QTL

mapping for binary data is predictable by the

proportion given by Robertson & Lerner (1949). The

results showed that loss of information as a result of

truncating NDL data to binary form is equivalent to

the extent that heritability is reduced in binary versus

normal data. The results for original NDL data were

also presented to show its contrast with results for

reduced-NDL data in terms of power and bias of QTL

parameters.

The higher power and better accuracy for NDL

compared with binary data are expected because of

loss of information when underlying continuous data

are truncated to binary data. Earlier studies have also

shown similar results for crosses between inbred lines

(Xu & Atchley, 1996; Rebai, 1997). However, com-

parison of results for reduced-NDL and binary data

showed that there are no significant differences

between the two types of data (or RIM
r
versus RIM

b
)

in terms of significance threshold values (Table 7),

power to detect QTL (Table 8) and estimates of QTL

location (Table 9). Estimates of QTL variances were

on different scales and, hence, could not be compared,

but the test of unbiasedness (Table 11) showed that

both types of data tended to have similar bias in

estimates of QTL effect. Although the prediction

based on the formula of Robertson & Lerner (1949)

has been used to transform heritabilities to alternative

scale, none of the studies has shown that it can be used

for prediction of loss of power to detect QTL and bias

in QTL parameter estimates for binary traits. Hence

these results will be useful in designing QTL mapping

experiments.

(c) General remarks

In this study, we considered a single marker interval

flanked by two informative markers. In practice, there

would be many marker intervals of different in-

formation content. In this situation, the GIM method

shown here could be directly extended to include

multiple markers of different information content as

described for RIM by Knott et al. (1996). The results

from comparison of GIM and RIM would still be

applicable in this situation because the effect of

adding more markers of different information content

is expected to be the same for both the GIM and RIM.
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One widely known problem in QTL mapping with

outbred populations is the uncertainty of marker and

QTL allele transmission that warrants the use of

probabilities to indicate the QTL allele transmission

status (e.g. Knott et al., 1996; Kadarmideen &

Dekkers, 1999). With the true model, the independent

variable (QTL allele transmission status) would be

known with certainty (0 or 1). Uncertainty, however,

causes at least two problems. First, in our model on

the liability scale, we assumed that residual error is

uniform and normally distributed. These assumptions

are indeed approximations because the residual error

has a mixed distribution and is heterogeneous due to

errors in independent variables. Secondly, PEVs are

unbiased only if independent variables are known

without error; otherwise they are expected to be

biased downwards. This underestimation in PEVs

results in overestimation of QTL variances (Eq. 4).

Many discontinuous traits can be classified as a

binary trait although there are discontinuous traits of

interest that have more than two categories. For such

traits, GIM could be extended based on methods

described by Gianola & Foulley (1983). RIM is not

suitable for analysis of traits with multiple categories,

especially when the category probabilities must be

known accurately for their use in breeding pro-

grammes (Rebai, 1997). It is known that interactions

found on the underlying scale are expected to be less

than those found on the observed scale (confirmed in

real calving ease data from American Simmental

cattle by Quaas et al., 1988), in which case threshold

models may be preferred over the linear model. The

comparison between threshold and linear models in

more complicated designs is an important area of

research that needs further investigation.

A binomial distribution of the trait results in a

much greater violation of normality than e.g. Poisson

or gamma distributions. Therefore it could be expected

that similarities between RIM and GIM in the

efficiency of QTL mapping, observed in this study,

would also be applicable for traits with other non-

normal distributions.

(d) Conclusions

We showed that, for most practical purposes, the

RIM and GIM are equivalent methods for QTL

mapping for binary traits for multi-family half-sib

designs and in the presence of fixed effects. The

similarity in results for RIM and GIM for binary data

may be due to the specific situations considered in this

study. Specifically, further analysis of more un-

balanced data structures, associations between sire

QTL status and herd mean, smaller herd and progeny

group sizes, and other QTL mapping designs is

required. We have also shown that the impact of the

binary nature of data on power and QTL parameters

can be predicted on the basis of its impact on

heritability.
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Appendix

Newton–Raphson algorithm

Given recombination rate r
"
, covariates c

ijk
can be

computed and used as covariates in a (non-linear)

regression model. The resulting non-linear regression

model was fitted using a Newton–Raphson algorithm

of Gianola & Foulley (1983). The variables used in the

iterative maximization were:

�
ijk

¯
®#(µ

ijk
)

1®Φ(µ
ijk

)
if y

ijk
¯ 0

�
ijk

¯
#(µ

ijk
)

Φ(µ
ijk

)
if y

ijk
¯1

w
ijk

¯ �#
ijk

­µ
ijk

\ν
ijk

,

where elements, ν
ijk

and w
ijk

are first and second

differentials of the log-likelihood, L (equation 3),

which can be derived based on principles outlined by

Gianola & Foulley (1983). Elements ν
ijk

and w
ijk

can

be accumulated in a vector v and a diagonal matrix W,

respectively. Further, y
ijk

is replaced by a ‘working’

dependent variable λ
ijk

, defined as: λ
ijk

¯µ
ijk

­
ν
ijk

\w−"
ijk

. Then solution for b in iteration number

k­1, (b)
k+"

, at a given location r
"

in the marker

interval is obtained from:

A

B

x!1wx2

x!1wx1

x!1wx3

x!2wx2

x!1wx2

x!2wx3

x!2wx3

x!1wx3

x!3wx3

C

D

k A

B

h

βo

β

C

D

k+1

¯

A

B

x!2wλ

x!1wλ

x!3wλ

C

D

k

where the elements of the left- and right-hand sides of

the equations are sub-matrices and sub-vectors :

x!1wx1 ¯diag²w
i..

´,x!1wx2²wij.
´,x!1wx3 ¯diag²w

i...
c
i...

´,

x!2wx2 ¯diag²w
.j.

´,x!2wx3 ¯²w
ij.

c
ij.

´,x!3wx3 ¯²w
i..

c#
i..

´,

x!1wλ¯²w
i..

λ
i..

´,x!2wλ¯²w
.j.

λ
.j.

´

x!3wλ¯ [w
i..

c
i..

λ
i..

´.

Because of a linear dependency in the equations, one

of the herd effects was set to zero. Note that for each

round of iteration,weights w
ijk

and working dependent

variables λ
ijk

are computed from solutions from the

previous round. Iterations were continued until

1}q(∆
[k+"]

«∆
[k+"]

)%` ,
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where∆
[k+"]

¯ rbk®bk+1r, q is the number of parameters

fitted and ` is an arbitrary small number (10−&). Then,

the log-likelihood L in equation (3) is computed using

the converged solutions for a given QTL location.

Prediction Error Variance of QTL substitution effects

(PEVβ)

GIM. The average PEVβ across S sire families was

computed as:

PEVβ ¯
1

S
3
S

i="

diag²(X«WX)−"´
i
.

Note that σ#
e

is not involved in the computation of

PEVβ because X«WX is a Hessian matrix and the

inverse of X«WX is the information matrix.

RIM. For RIM, average PEVβ was computed for the

best fitting model as :

PEVβ ¯
1

S
3
S

i="

diag²(X«X)−"´
i
σ#

e
.
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