Skip to main content Accessibility help
×
×
Home

SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM

  • THOMAS A. HULSE (a1), CHAN IEONG KUAN (a2), DAVID LOWRY-DUDA (a3) and ALEXANDER WALKER (a4)

Abstract

The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to $P_{k}(n)^{2}$ , where $P_{k}(n)$ is the discrepancy between the volume of the $k$ -dimensional sphere of radius $\sqrt{n}$ and the number of integer lattice points contained in that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums, including $\sum P_{k}(n)^{2}e^{-n/X}$ and the Laplace transform $\int _{0}^{\infty }P_{k}(t)^{2}e^{-t/X}\,dt$ , in dimensions $k\geqslant 3$ . We also obtain main terms and power-saving error terms for the sharp sums $\sum _{n\leqslant X}P_{k}(n)^{2}$ , along with similar results for the sharp integral $\int _{0}^{X}P_{3}(t)^{2}\,dt$ . This includes producing the first power-saving error term in mean square for the dimension-3 Gauss circle problem.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      SECOND MOMENTS IN THE GENERALIZED GAUSS CIRCLE PROBLEM
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[BW17] Bourgain, J. and Watt, N., ‘Mean square of zeta function, circle problem and divisor problem revisited’. arXiv preprint, arXiv:1709.04340 (2017).
[CKO05] Choi, S. K. K., Kumchev, A. V. and Osburn, R., ‘On sums of three squares’, Int. J. Number Theory 1(2) (2005), 161173.
[DI83] Deshouillers, J.-M. and Iwaniec, H., ‘Kloosterman sums and Fourier coefficients of cusp forms’, Invent. Math. 70(2) (1982/83), 219288.
[Gol15] Goldfeld, D., Automorphic Forms and L-functions for the Group GL(n, R), Cambridge Studies in Advanced Mathematics, 99 (Cambridge University Press, Cambridge, 2015), With an appendix by Kevin A. Broughan, Paperback edition of the 2006 original.
[GR15] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 8th edn (Elsevier/Academic Press, Amsterdam, 2015), Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition.
[DG00a] Gupta, S. D., ‘Corrigendum to my paper ‘The Rankin–Selberg method on congruence subgroups’’, Illinois J. Math. 44(4) (2000), 924926.
[DG00b] Gupta, S. D., ‘The Rankin–Selberg method on congruence subgroups’, Illinois J. Math. 44(1) (2000), 95103.
[HB99] Heath-Brown, D. R., ‘Lattice points in the sphere’, inNumber Theory in Progress, Vol. 2 (Zakopane-Kościelisko 1997) (de Gruyter, Berlin, 1999), 883892.
[HH16] Hoffstein, J. and Hulse, T. A., ‘Multiple Dirichlet series and shifted convolutions’, J. Number Theory 161 (2016), 457533. With an appendix by Andre Reznikov.
[HKLDW17a] Hulse, T. A., Kuan, C. I., Lowry-Duda, D. and Walker, A., ‘The Laplace transform of the second moment in the Gauss circle problem’. arXiv preprint, arXiv:1705.04771 (2017).
[HKLDW17b] Hulse, T. A., Kuan, C. I., Lowry-Duda, D. and Walker, A., ‘The second moment of sums of coefficients of cusp forms’, J. Number Theory 173 (2017), 304331.
[HKLDW17c] Hulse, T. A., Kuan, C. I., Lowry-Duda, D. and Walker, A., ‘Short-interval averages of sums of Fourier coefficients of cusp forms’, J. Number Theory 173 (2017), 394415.
[Hux85] Huxley, M. N., ‘Introduction to Kloostermania’, inElementary and Analytic Theory of Numbers (Warsaw, 1982), Banach Center Publ., 17 (PWN, Warsaw, 1985), 217306.
[Hux03] Huxley, M. N., ‘Exponential sums and lattice points. III’, Proc. Lond. Math. Soc. (3) 87(3) (2003), 591609.
[Ivi01] Ivić, A., ‘A note on the Laplace transform of the square in the circle problem’, Studia Sci. Math. Hungar. 37(3–4) (2001), 391399.
[IKKN06] Ivić, A., Krätzel, E., Kühleitner, M. and Nowak, W. G., ‘Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic’, inElementare und analytische Zahlentheorie, Publications of the Scientific Society at the Johann Wolfgang Goethe University, Frankfurt am Main. Franz Steiner Verlag Stuttgart, Postfach 10 10 61, 70009 Stuttgard, Germany, 20 (Franz Steiner Verlag Stuttgart, Stuttgart, 2006), 89128.
[Iwa02] Iwaniec, H., Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, 53 (American Mathematical Society, Providence, RI, 2002), Revista Matemática Iberoamericana, Madrid, second edition.
[IK04] Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).
[Jar40] Jarník, V., ‘Über die Mittelwertsätze der Gitterpunktlehre. V’, Časopis Pěst. Mat. Fys. 69 (1940), 148174.
[Kır15] Kıral, E. M., ‘Subconvexity for half integral weight L-functions’, Math. Z. 281(3–4) (2015), 689722.
[Krä00] Krätzel, E., Analytische Funktionen in der Zahlentheorie, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 139 (B. G. Teubner, Stuttgart, 2000).
[Kub73] Kubota, T., Elementary Theory of Eisenstein Series (Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York–London–Sydney, 1973).
[Lan19] Landau, E., ‘Über die Gitterpunkte in einem Kreise’, Math. Z. 5(3–4) (1919), 319320.
[Lan69] Landau, E., Vorlesungen über Zahlentheorie. zweiter Band (Chelsea Publishing Co., New York, 1969).
[Lau99] Lau, Y.-K., ‘On the mean square formula of the error term for a class of arithmetical functions’, Monatsh. Math. 128(2) (1999), 111129.
[LT09] Lau, Y.-K. and Tsang, K.-M., ‘On the mean square formula of the error term in the Dirichlet divisor problem’, Math. Proc. Cambridge Philos. Soc. 146(2) (2009), 277287.
[MV06] Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory I: Classical Theory, Vol. 97 (Cambridge University Press, Cambridge, 2006).
[Mül92] Müller, W., ‘The mean square of Dirichlet series associated with automorphic forms’, Monatsh. Math. 113(2) (1992), 121159.
[Sie06] Sierpiński, W., ‘O pewnem zagadnieniu z rachunku funckcyi asymptotycnych’, Prace mat.-fiz (1906), 77118.
[Vin63] Vinogradov, I. M., ‘On the number of integer points in a sphere’, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 957968.
[Zag81] Zagier, D., ‘The Rankin–Selberg method for automorphic functions which are not of rapid decay’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1982), 415437. 1981.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed