Skip to main content Accessibility help
×
Home

PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE

  • CHRISTIAN JOHANSSON (a1) and JAMES NEWTON (a2)

Abstract

Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$ . We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$ . For these eigenvarieties, we show that methods developed by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite over weight space. We apply this result to prove the parity version of the Bloch–Kato conjecture for finite slope Hilbert modular forms with trivial central character (with a technical assumption if $[F:\mathbb{Q}]$ is odd), by reducing to the case of parallel weight $2$ . As another consequence of our results on partial eigenvarieties, we show, still under the assumption that $p$ is totally split in $F$ , that the ‘full’ (dimension $1+[F:\mathbb{Q}]$ ) cuspidal Hilbert modular eigenvariety has the property that many (all, if $[F:\mathbb{Q}]$ is even) irreducible components contain a classical point with noncritical slopes and parallel weight $2$ (with some character at $p$ whose conductor can be explicitly bounded), or any other algebraic weight.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[BDJ17] Barrera, D., Dimitrov, M. and Jorza, A., ‘ $p$ -adic $L$ -functions of Hilbert cusp forms and the trivial zero conjecture’. ArXiv e-prints, September 2017.
[BC09] Bellaïche, J. and Chenevier, G., ‘Families of Galois representations and Selmer groups’, Astérisque 324 (2009), xii+314.
[Ber08] Berger, L., ‘Équations différentielles p-adiques et (𝜙, N)-modules filtrés’, Astérisque 319 (2008), 1338. Représentations $p$ -adiques de groupes $p$ -adiques. I. Représentations galoisiennes et $(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$ -modules.
[BC08] Berger, L. and Colmez, P., ‘Familles de représentations de de Rham et monodromie p-adique’, Astérisque 319 (2008), 303337. Représentations $p$ -adiques de groupes $p$ -adiques. I. Représentations galoisiennes et $(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$ -modules.
[Buz07] Buzzard, K., ‘Eigenvarieties’, in L-functions and Galois Representations, London Mathematical Society Lecture Note Series, 320 (Cambridge University Press, Cambridge, 2007), 59120.
[Che] Chenevier, G., ‘Une application des variétés de Hecke des groupes unitaires’, inShimura Varieties, London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, in press).
[Che04] Chenevier, G., ‘Familles p-adiques de formes automorphes pour GLn ’, J. Reine Angew. Math. 570 (2004), 143217.
[Che11] Chenevier, G., ‘On the infinite fern of Galois representations of unitary type’, Ann. Sci. Éc. Norm. Supér. (4) 44(6) (2011), 9631019.
[Che14] Chenevier, G., ‘The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings’, inAutomorphic Forms and Galois Representations, Vol. 1, London Mathematical Society Lecture Note Series, 414 (Cambridge University Press, Cambridge, 2014), 221285.
[CH13] Chenevier, G. and Harris, M., ‘Construction of automorphic Galois representations, II’, Camb. J. Math. 1(1) (2013), 5373.
[CHJ17] Chojecki, P., Hansen, D. and Johansson, C., ‘Overconvergent modular forms and perfectoid Shimura curves’, Doc. Math. 22 (2017), 191262.
[CM98] Coleman, R. and Mazur, B., ‘The eigencurve’, inGalois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Mathematical Society Lecture Note Series, 254 (Cambridge University Press, Cambridge, 1998), 1113.
[Col08] Colmez, P., ‘Représentations triangulines de dimension 2’, Astérisque 319 (2008), 213258. Représentations $p$ -adiques de groupes $p$ -adiques. I. Représentations galoisiennes et $(\unicode[STIX]{x1D719},\unicode[STIX]{x1D6E4})$ -modules.
[Din18] Ding, Y., ‘Some results on the locally analytic socle for GLn(ℚp)’, Int. Math. Res. Not. IMRN (2018), rnx287.
[Fie80] Fieseler, K.-H., ‘Zariski’s main theorem für affinoide Kurven’, Math. Ann. 251(2) (1980), 97110.
[Ger19] Geraghty, D., ‘Modularity lifting theorems for ordinary Galois representations’, Math. Ann. 373(3–4) (2019), 13411427.
[Han17] Hansen, D., ‘Universal eigenvarieties, trianguline Galois representations, and p-adic Langlands functoriality’, J. Reine Angew. Math. 730 (2017), 164.
[JN19a] Johansson, C. and Newton, J., ‘Irreducible components of extended eigenvarieties and interpolating Langlands functoriality’, Math. Res. Lett. 26(1) (2019), 159201.
[JN19b] Johansson, C. and Newton, J., ‘Extended eigenvarieties for overconvergent cohomology’, Algebra Number Theory 13(1) (2019), 93158.
[dJvdP96] de Jong, J. and van der Put, M., ‘Étale cohomology of rigid analytic spaces’, Doc. Math. 1(01) (1996), 156.
[KPX14] Kedlaya, K. S., Pottharst, J. and Xiao, L., ‘Cohomology of arithmetic families of (𝜑, 𝛤)-modules’, J. Amer. Math. Soc. 27(4) (2014), 10431115.
[Liu12] Liu, T., ‘Lattices in filtered (𝜙, N)-modules’, J. Inst. Math. Jussieu 11(3) (2012), 659693.
[LWX17] Liu, R., Wan, D. and Xiao, L., ‘The eigencurve over the boundary of weight space’, Duke Math. J. 166(9) (2017), 17391787.
[Loe11] Loeffler, D., ‘Overconvergent algebraic automorphic forms’, Proc. Lond. Math. Soc. (3) 102(2) (2011), 193228.
[Mil80] Milne, J. S., Étale Cohomology, Princeton Mathematical Series, 33 (Princeton University Press, Princeton, NJ, 1980).
[Nek06] Nekovář, J., ‘Selmer complexes’, Astérisque 310 (2006), viii+559.
[Nek07] Nekovář, J., ‘On the parity of ranks of Selmer groups. III’, Doc. Math. 12 (2007), 243274.
[Nek13] Nekovář, J., ‘Some consequences of a formula of Mazur and Rubin for arithmetic local constants’, Algebra Number Theory 7(5) (2013), 11011120.
[Nek18] Nekovář, J., ‘Compatibility of arithmetic and algebraic local constants, II: the tame abelian potentially Barsotti–Tate case’, Proc. Lond. Math. Soc. (3) 116(2) (2018), 378427.
[PX] Pottharst, J. and Xiao, L., ‘On the parity conjecture in finite-slope families’, Preprint,http://arxiv.org/abs/1410.5050.
[vdP82] van der Put, M., ‘Cohomology on affinoid spaces’, Compositio Math. 45(2) (1982), 165198.
[Sai09] Saito, T., ‘Hilbert modular forms and p-adic Hodge theory’, Compositio Math. 145(5) (2009), 10811113.
[Ser98] Serre, J.-P., Abelian l-adic Representations and Elliptic Curves, Research Notes in Mathematics, 7 (A K Peters, Ltd, Wellesley, MA, 1998); With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original.
[Ski09] Skinner, C., ‘A note on the p-adic Galois representations attached to Hilbert modular forms’, Doc. Math. 14 (2009), 241258.
[Tem14] Templier, N., ‘Large values of modular forms’, Camb. J. Math. 2(1) (2014), 91116.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE

  • CHRISTIAN JOHANSSON (a1) and JAMES NEWTON (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed