Skip to main content Accessibility help
×
Home

OBSTRUCTIONS TO ALGEBRAIZING TOPOLOGICAL VECTOR BUNDLES

  • A. ASOK (a1), J. FASEL (a2) and M. J. HOPKINS (a3)

Abstract

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$ , it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      OBSTRUCTIONS TO ALGEBRAIZING TOPOLOGICAL VECTOR BUNDLES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      OBSTRUCTIONS TO ALGEBRAIZING TOPOLOGICAL VECTOR BUNDLES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      OBSTRUCTIONS TO ALGEBRAIZING TOPOLOGICAL VECTOR BUNDLES
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[AF14a] Asok, A. and Fasel, J., ‘Algebraic vector bundles on spheres’, J. Topol. 7(3) (2014), 894926.
[AF14b] Asok, A. and Fasel, J., ‘A cohomological classification of vector bundles on smooth affine threefolds’, Duke Math. J. 163(14) (2014), 25612601.
[AF15a] Asok, A. and Fasel, J., ‘Secondary characteristic classes and the Euler class’, Doc. Math. (2015), 729. (Extra vol.: Alexander S. Merkurjev’s Sixtieth Birthday).
[AF15b] Asok, A. and Fasel, J., ‘Splitting vector bundles outside the stable range and homotopy theory of punctured affine spaces’, J. Amer. Math. Soc. 28(4) (2015), 10311062.
[AF17] Asok, A. and Fasel, J., ‘An explicit KO-degree map and applications’, J. Topol. 10(1) (2017), 268300.
[AHW17] Asok, A., Hoyois, M. and Wendt, M., ‘Affine representability results in A1 -homotopy theory I: vector bundles’, Duke Math. J. 166(10) (2017), 19231953.
[AR76] Atiyah, M. F. and Rees, E., ‘Vector bundles on projective 3-space’, Invent. Math. 35 (1976), 131153.
[BP87] Bănică, C. and Putinar, M., ‘On complex vector bundles on projective threefolds’, Invent. Math. 88(2) (1987), 427438.
[Bro03] Brosnan, P., ‘Steenrod operations in Chow theory’, Trans. Amer. Math. Soc. 355(5) (2003), 18691903 (electronic).
[Del09] Deligne, P., ‘Voevodsky’s lectures on motivic cohomology 2000/2001’, inAlgebraic Topology, Abel Symp., 4 (Springer, Berlin, 2009), 355409.
[DI05] Dugger, D. and Isaksen, D. C., ‘Motivic cell structures’, Algebr. Geom. Topol. 5 (2005), 615652.
[EG98] Edidin, D. and Graham, W., ‘Equivariant intersection theory’, Invent. Math. 131(3) (1998), 595634.
[Fas13] Fasel, J., ‘The projective bundle theorem for j -cohomology’, J. K-Theory I(2) (2013), 413464.
[For11] Forstnerič, F., Stein Manifolds and Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 56 (Springer, Heidelberg, 2011).
[Ful98] Fulton, W., Intersection Theory, 2nd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2 (Springer, Berlin, 1998).
[Gil81] Gillet, H., ‘Riemann-Roch theorems for higher algebraic K-theory’, Adv. Math. 40(3) (1981), 203289.
[Gra58] Grauert, H., ‘Analytische Faserungen über holomorph-vollständigen Räumen’, Math. Ann. 135 (1958), 263273.
[Gri72] Griffiths, P. A., ‘Function theory of finite order on algebraic varieties. i(a)’, J. Differential Geometry 6 (1971/72), 285306.
[Har70] Hartshorne, R., Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics, 156 (Springer, Berlin-New York, 1970), Notes written in collaboration with C. Musili.
[KM82] Kumar, N. M. and Murthy, M. P., ‘Algebraic cycles and vector bundles over affine three-folds’, Ann. of Math. (2) 116(3) (1982), 579591.
[MVW06] Mazza, C., Voevodsky, V. and Weibel, C., Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, 2 (American Mathematical Society, Providence, RI, 2006).
[Mor04] Morel, F., ‘Sur les puissances de l’idéal fondamental de l’anneau de Witt’, Comment. Math. Helv. 79(4) (2004), 689703.
[Mor12] Morel, F., A1 -Algebraic Topology Over a Field, Lecture Notes in Mathematics, 2052 (Springer, Heidelberg, 2012).
[MV99] Morel, F. and Voevodsky, V., ‘A1 -homotopy theory of schemes’, Publ. Math. Inst. Hautes Études Sci. 90(2001) (1999), 45143.
[MS76] Murthy, M. P. and Swan, R. G., ‘Vector bundles over affine surfaces’, Invent. Math. 36 (1976), 125165.
[OVV07] Orlov, D., Vishik, A. and Voevodsky, V., ‘An exact sequence for K M /2 with applications to quadratic forms’, Ann. of Math. (2) 165(1) (2007), 113.
[Pus04] Pushin, O., ‘Higher Chern classes and Steenrod operations in motivic cohomology’, J. K-Theory 31(4) (2004), 307321.
[Sch61] Schwarzenberger, R. L. E., ‘Vector bundles on algebraic surfaces’, Proc. Lond. Math. Soc. (3) 11 (1961), 601622.
[Ser58] Serre, J.-P., ‘Modules projectifs et espaces fibrés à fibre vectorielle’, inSéminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23 (Secrétariat mathématique, Paris, 1958), 18.
[Ser59] Serre, J.-P., ‘On the fundamental group of a unirational variety’, J. Lond. Math. Soc. 34 (1959), 481484.
[Sus87] Suslin, A. A., ‘Torsion in K 2 of fields’, K-Theory 1(1) (1987), 529.
[SV05] Soulé, C. and Voisin, C., ‘Torsion cohomology classes and algebraic cycles on complex projective manifolds’, Adv. Math. 198(1) (2005), 107127.
[Tot03] Totaro, B., ‘Non-injectivity of the map from the Witt group of a variety to the Witt group of its function field’, J. Inst. Math. Jussieu 2(3) (2003), 483493.
[Tot13] Totaro, B., ‘On the integral Hodge and Tate conjectures over a number field’, Forum Math. Sigma 1 (2013), e4, 13pp.
[Tre92] Trento examples, Classification of Irregular Varieties (Trento 1990), Lecture Notes in Mathematics, 1515(Springer, Berlin, 1992), 134139.
[Voe03] Voevodsky, V., ‘Reduced power operations in motivic cohomology’, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 157.
[Voe04] Voevodsky, V., ‘On the zero slice of the sphere spectrum’, Tr. Mat. Inst. Steklova 246(Algebr. Geom. Metody, Svyazi i Prilozh) (2004), 106115.
[Voi07] Voisin, C., Hodge Theory and Complex Algebraic Geometry. II, English edn, Cambridge Studies in Advanced Mathematics, 77 (Cambridge University Press, Cambridge, 2007), Translated from the French by Leila Schneps.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed