Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-mtzzk Total loading time: 0.232 Render date: 2022-06-25T20:35:32.844Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder

Published online by Cambridge University Press:  16 April 2020

A. Andreazza*
Affiliation:
Department of Psychiatry, University of British Columbia, Vancouver, Canada

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While we continue to refine our understanding of the pathophysiology of bipolar disorder (BD), several hypotheses have been postulated including a role for monoamines, gamma-amino butyric acid, glutamate, and second messenger signaling pathways. Recently, mitochondrial dysfunction and oxidative stress have been identified by a number of studies, as an important etiological factor in this disorder. Mitochondria play a crucial role in ATP production through oxidative phosphorylation, a process carried out by the electron transport chain (ETC) complexes. During the transfer of electrons along this ETC, the ROS can be generated, especially in complex I and III4. Growing body of evidence suggests the association of mitochondrial dysfunction and BD. Recent DNA microarray analysis in post-mortem frontal cortex and hippocampus revealed that the expression of several mRNAs coding for ETC complexes I-V subunits was decreased in subjects with BD. Supporting the key involvement of oxidative damage in BD, assays conducted with peripheral blood samples have demonstrated that BD is associated with alterations in antioxidant enzymes and increased lipid peroxidation. Recently we found that oxidative damage to lipid is present in the frontal cortex of BD subjects. A meta-analysis suggested that the levels of lipid peroxidation are elevated in BD providing support for oxidative stress hypothesis of BD. Furthermore, BD subjects showed increased DNA damage, as well as, upregulation of apoptotic genes. These data not only suggest that oxidative mechanisms may form unifying common pathogenic pathways in psychiatric disorders, but also introduce new targets for the development of therapeutic interventions.

Type
S02-02
Copyright
Copyright © European Psychiatric Association 2009
Submit a response

Comments

No Comments have been published for this article.
You have Access
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *