[1]
Alabau-Boussouira, F., Piecewise multiplier
method and nonlinear integral inequalities for Petrowsky equation with nonlinear
dissipation. *J. Evol. Equ.*
6 (2006) 95–112.

[2]
Alabau, F. and Komornik, V., Boundary observability,
controllability, and stabilization of linear elastodynamic systems.
*SIAM J. Control Optim.*
37 (1999)
521–542.

[3]
Arendt, W., Batty, C. J.
K., Tauberian theorems and stability
of one-parameter semigroups. *Trans. Amer. Math.
Soc.*
306 (1988)
837–852.

[4]
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for
the observation, control and stabilization from the boundary.
*SIAM J. Control Optim.*
30 (1992)
1024–1065.

[5]
Bátkai, A., Engel, K.-J., Prüss, J. and Schnaubelt, R., Polynomial stability of
operator semigroups. *Math. Nachr.*
279 (2006)
1425–1440.

[6]
Batty, C.J.K. and Duyckaerts, T., Non-uniform stability for
bounded semi-groups on Banach spaces. *J. Evol.
Equ.*
8 (2008) 765–780.

[7]
Borichev, A. and Tomilov, Y., Optimal polynomial decay of
functions and operator semigroups. *Math.
Annal.*
347 (2010)
455–478.

[8] H. Brezis, Analyse fonctionnelle. *Théorie
et Applications*. Masson, Paris (1983).

[9]
Burq, N., Décroissance de l’énergie locale
de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage
du réel. *Acta Math.*
180 (1998) 1–29.

[10]
Chen, G., Control and stabilization for the
wave equation in a bounded domain. *SIAM J. Control
Optim.*
17 (1979) 66–81.

[11]
Chen, G., Fulling, S.A., Narcowich, F.J. and
Sun, S., Exponential decay of energy of
evolution equations with locally distributed damping.
*SIAM J. Appl. Math.*
51 (1991)
266–301.

[12]
Chen, G. and Russell, D.L., A mathematical model for linear
elastic systems with structural damping. *Quart. Appl.
Math.*
39 (1981/1982)
433-454.

[13]
Conrad, F. and Rao, B., Decay of solutions of the wave
equation in a star-shaped domain with nonlinear boundary feedback.
*Asymptotic Anal.*
7 (1993) 159–177.

[14] S. Ervedoza, E. Zuazua, Uniform exponential decay
for viscous damped systems. Advances in phase space analysis of partial differential
equations. *Progr. Nonlinear Differential Equ. Appl.* vol. 78. Birkhäuser
Boston, Inc., Boston, MA (2009) 95–112.

[15]
Ervedoza, S. and Zuazua, E., Uniformly exponentially stable
approximations for a class of damped systems. *J. Math.
Pures Appl.*
91 (2009) 20–48.

[16]
Fu, X., Longtime behavior of the hyperbolic
equations with an arbitrary internal damping. *Z. Angew.
Math. Phys.*
62 (2011)
667–680.

[17]
Fu, X., Logarithmic decay of hyperbolic
equations with arbitrary small boundary damping. *Commun.
Partial Differ. Equ.*
34 (2009)
957–975.

[18]
Guzmán, R.B. and Tucsnak, M., Energy decay estimates for the
damped plate equation with a local degenerated dissipation.
*Systems Control Lett.*
48 (2003)
191–197.

[19]
Haraux, A., Une remarque sur la
stabilisation de certains systèmes du deuxième ordre en temps.
*Portugal. Math.*
46 (1989)
245–258.

[20]
Huang, F.L., Characteristic conditions for
exponential stability of linear dynamical systems in Hilbert spaces.
*Annal. Differ. Equ.*
1 (1985) 43–56.

[21]
Komornik, V., Rapid boundary stabilization
of the wave equation. *SIAM J. Control
Optim.*
29 (1991)
197–208.

[22] V. Komornik, *Exact controllability and
stabilization. The multiplier method, RAM*. Masson and John Wiley, Paris (1994).

[23] V. Komornik and V. Boundary stabilization of
isotropic elasticity systems. Control of partial differential equations and applications
(Laredo, 1994), vol. 174. *Lect. Notes Pure and Appl. Math.* Dekker, New
York (1996) 135–146.

[24]
Komornik, V., Rapid boundary stabilization
of linear distributed systems. *SIAM J. Control
Optim.*
35 (1997)
1591–1613.

[25]
Komornik, V. and Zuazua, E., A direct method for the boundary
stabilization of the wave equation. *J. Math. Pures
Appl.*
69 (1990) 33–54.

[26]
Lagnese, J., Boundary stabilization of
linear elastodynamic systems. *SIAM J. Control
Opt.*
21 (1983)
968–984.

[27]
Lagnese, J., Decay of solutions of wave
equations in a bounded region with boundary dissipation.
*J. Differ. Equ.*
50 (1983)
163–182.

[28] J. Lagnese, Boundary Stabilization of Thin Plates,
vol. 10. *SIAM Stud. Appl. Math.* Philadelphia, PA (1989).

[29]
Lasiecka, I. and Tataru, D., Uniform boundary stabilization
of semilinear wave equations with nonlinear boundary damping.
*Differ. Integral Equ.*
6 (1993) 507–533.

[30]
Lasiecka, I. and Triggiani, R., Uniform stabilization of the
wave equation with Dirichlet or Neumann feedback control without geometrical
conditions. *Appl. Math. Optim.*
25 (1992)
189–224.

[31]
Lebeau, G., Equation des ondes amorties.
Algebraic and geometric methods in mathematical physics (Kaciveli,
1993). *Math. Phys. Stud.*
Kluwer Acad. Publ., Dordrecht
19 (1996) 73–109.

[32]
Lebeau, G. and Robbiano, L., Stabilisation de l’équation
des ondes par le bord. *Duke Math. J.*
86 (1997)
465–491.

[33] J.-L. Lions, Contrôlabilité exacte,
*Perturbations et Stabilisation des Systèmes Distribués*, vol. 8 of
*RMA*. Masson, Paris (1988).

[34]
Liu, K., Locally distributed control and
damping for the conservative systems. *SIAM J. Control
and Opt*. 35 (1997)
1574–1590.

[35]
Liu, Z. and Rao, B., Characterization of polynomial
decay rate for the solution of linear evolution equation.
*Z. Angew. Math. Phys.*
56 (2005),
630–644.

[36]
Liu, K. and Rao, B., Exponential stability for the wave
equations with local Kelvin–Voigt damping. *Z. Angew.
Math. Phys.*
57 (2006)
419–432.

[37] P. Martinez, Ph.D. Thesis, University of
Strasbourg (1998).

[38]
Martinez, P., Boundary stabilization of the
wave equation in almost star-shaped domains. *SIAM J.
Control Optim.*
37 (1999)
673–694.

[39]
Nakao, M., Decay of solutions of the wave
equation with a local degenerate dissipation. *Israel J.
Math*. 95 (1996)
25–42.

[40]
Osses, A., A rotated multiplier applied to
the controllability of waves, elasticity, and tangential Stokes control.
*SIAM J. Control Optim.*
40 (2001)
777–800.

[41] A. Pazy, Semigroups of Linear Operators and
Applications to Partial Differential Equations, vol. 44 of *Appl. Math.
Sci.* Springer-Verlag, New York (1983).

[42]
Phung, K. D., Polynomial decay rate for the
dissipative wave equation. *J. Differ.
Equ.*
240 (2007)
92–124.

[43]
Phung, K. D., Boundary stabilization for the
wave equation in a bounded cylindrical domain. *Discrete
Contin. Dyn. Syst.*
20 (2008)
1057–1093.

[44]
Prüss, J., On the spectrum of
*C* _{0}-semigroups. *Trans.
Amer. Math. Soc.*
284 (1984)
847–857.

[45]
Quinn, J.P., Russell, D.L., Asymptotic stability and energy
decay rates for solutions of hyperbolic equations with boundary damping.
*Proc. Roy. Soc. Edinburgh Sect. A*
77 (1977) 97–127.

[46]
Russell, D.L., Controllability and
stabilizability theory for linear partial differential equations: recent progress and
open questions. *SIAM Rev.*
20 (1978)
639–739.

[47]
Tcheugoué Tébou, L.R., Sur la stabilisation de
l’équation des ondes en dimension 2. *C. R. Acad. Sci.
Paris Ser. I Math.*
319 (1994)
585–588.

[48]
Tcheugoué Tébou, L.R., On the stabilization of
the wave and linear elasticity equations in 2-D.
*Panamer. Math. J.*
6 (1996) 41–55.

[49]
Tcheugoué Tébou, L.R., On the decay estimates
for the wave equation with a local degenerate or nondegenerate
dissipation. *Portugal. Math.*
55 (1998)
293–306.

[50]
Tcheugoué Tébou, L.R., Stabilization of the
wave equation with localized nonlinear damping
*J.D.E.*
145 (1998)
502–524.

[51]
Tcheugoué Tébou, L.R., Well-posedness and
energy decay estimates for the damped wave equation with L^{r}
localizing coefficient, *Commun. in
P.D.E.*
23 (1998)
1839–1855.

[52]
Tcheugoué Tébou, L.R., Energy decay estimates
for the damped Euler–Bernoulli equation with an unbounded localizing
coefficient. *Portugal. Math.*
61 (2004)
375–391.

[53]
Tcheugoué Tébou, L.R., On the stabilization of
dynamic elasticity equations with unbounded locally distributed
dissipation. *Differ. Integral Equ.*
19 (2006)
785–798.

[54]
Tebou, L., Stabilization of the
elastodynamic equations with a degenerate locally distributed
dissipation. *Syst. Control Lett.*
56 (2007)
538–545.

[55]
Tebou, L., Well-posedness and stabilization
of an Euler–Bernoulli equation with a localized nonlinear dissipation involving the
p-Laplacian. *DCDS A*
32 (2012)
2315–2337.

[56]
Tcheugoué Tébou, L.R. and
Zuazua, E., Uniform exponential long time
decay for the space finite differences semi-discretization of a locally damped wave
equation *via* an artificial numerical viscosity.
*Numerische Mathematik*
95 (2003)
563–598.

[57]
Tebou, L.T. and Zuazua, E., Uniform boundary stabilization
of the finite differences space discretization of the 1 − *d* wave
equation. *Adv. Comput. Math.*
26 (2007)
337–365.

[58]
Tucsnak, M., Semi-internal stabilization for
a non-linear Bernoulli-Euler equation. *Math. Methods
Appl. Sci.*
19 (1996)
897–907.

[59]
Wyler, A., Stability of wave equations with
dissipative boundary conditions in a bounded domain.
*Differential Integral Equ.*
7 (1994) 345–366.

[60]
Zuazua, E., Robustesse du feedback de
stabilisation par contrôle frontière. *C. R. Acad. Sci.
Paris Ser. I Math.*
307 (1988)
587–591.

[61]
Zuazua, E., Uniform stabilization of the
wave equation by nonlinear boundary feedback. *SIAM J.
Control Optim.*
28 (1990)
466–477.

[62]
Zuazua, E., Exponential decay for the
semilinear wave equation with locally distributed damping.
*Commun. P.D.E.*
15 (1990)
205–235.

[63]
Zuazua, E., Exponential decay for the
semilinear wave equation with localized damping in unbounded domains.
*J. Math. Pures. Appl.*
70 (1991)
513–529.