Skip to main content Accessibility help

Integral representation and Γ-convergence of variational integrals with p(x)-growth

  • Alessandra Coscia (a1) and Domenico Mucci (a1)


We study the integral representation properties of limits of sequences of integral functionals like   $\int f(x,Du)\,{\rm d}x$   under nonstandard growth conditions of (p,q)-type: namely, we assume that $$ \vert z\vert^{p(x)}\leq f(x,z)\leq L(1+\vert z\vert^{p(x)})\,. $$ Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral functionals of the same type. We also analyse the case of integrands f(x,u,Du) depending explicitly on u; finally we weaken the assumption allowing p(x) to be discontinuous on nice sets.



Hide All
[1] E. Acerbi, G. Bouchitté and I. Fonseca, Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003).
[2] Acerbi, E. and Mingione, G., Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140.
[3] E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339.
[4] R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
[5] Alkutov, Yu.A., The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations 33 (1998) 1653-1663.
[6] Bouchitté, G., Fonseca, I. and Malý, J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479.
[7] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989).
[8] Buttazzo, G. and Dal Maso, G., A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361.
[9] Buttazzo, G. and Dal Maso, G., Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532.
[10] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998).
[11] Carbone, L. and Sbordone, C., Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60.
[12] Chiadò Piat, V. and Coscia, A., Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299.
[13] Coscia, A. and Mingione, G., Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368.
[14] G. Dal Maso, An introduction to Γ-convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993).
[15] G. Dal Maso and L. Modica, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982).
[16] De Giorgi, E., Sulla convergenza di alcune successioni di integrali di tipo dell'area. Rend. Mat. Univ. Roma 8 (1975) 277-294.
[17] De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842-850.
[18] De Giorgi, E. and Letta, G., Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99.
[19] I. Ekeland and R. Temam, Convex analysis and variational problems. North Holland, Amsterdam (1978).
[20] Fan, X. and Zhao, D., A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A. 36 (1999) 295-318.
[21] Fusco, N., On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat. 32 (1983) 321-339.
[22] Marcellini, P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differential Equations 90 (1991) 1-30.
[23] Marcellini, P., Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161-181.
[24] Morrey, C.B., Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53.
[25] Rajagopal, K.R. and M. $\rm R{\mathaccent'27u}{\mathaccent'24z}i{\mathaccent'24c}ka$ , Mathematical modelling of electrorheological fluids. Cont. Mech. Therm. 13 (2001) 59-78.
[26] M. $\rm R{\mathaccent'27u}{\mathaccent'24z}i{\mathaccent'24c}ka$ , Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000).
[27] Zhikov, V.V., On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993) 427-459.
[28] Zhikov, V.V., Lavrentiev's, On phenomenon. Russian J. Math. Phys. 3 (1995) 249-269.
[29] Zhikov, V.V., On some variational problems. Russian J. Math. Phys. 5 (1997) 105-116.
[30] Zhikov, V.V., Meyers type estimates for solving the non linear Stokes system. Differential Equations 33 (1997) 107-114.
[31] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer, Berlin (1994).


Related content

Powered by UNSILO

Integral representation and Γ-convergence of variational integrals with p(x)-growth

  • Alessandra Coscia (a1) and Domenico Mucci (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.