Skip to main content Accessibility help
×
Home

A statewide outbreak of Cryptosporidium and its association with the distribution of public swimming pools

  • P. M. POLGREEN (a1), J. D. SPARKS (a2), L. A. POLGREEN (a3), M. YANG (a2), M. L. HARRIS (a4), M. A. PENTELLA (a5) and J. E. CAVANAUGH (a2)...

Summary

In order to characterize the association between county-level risk factors and the incidence of Cryptosporidium in the 2007 Iowa outbreak, we used generalized linear mixed models with the number of Cryptosporidium cases per county as the dependent variable. We employed a spatial power covariance structure, which assumed that the correlation between the numbers of cases in any two counties decreases as the distance between them increases. County population size was included in the model to adjust for population differences. Independent variables included the number of pools in specific pool categories (large, small, spa, wading, waterslide) and pool-owner classes (apartment, camp, country club or health club, hotel, municipal, school, other) as well as the proportion of residents aged <5 years. We found that increases in the number of bigger pools, pools with more heterogeneous mixing (municipal pools vs. country club or apartment pools), and pools catering to young children (wading pools) are associated with more cases at the county level.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A statewide outbreak of Cryptosporidium and its association with the distribution of public swimming pools
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A statewide outbreak of Cryptosporidium and its association with the distribution of public swimming pools
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A statewide outbreak of Cryptosporidium and its association with the distribution of public swimming pools
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr P. M. Polgreen, Division of Infectious Diseases, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA. (Email: philip-polgreen@uiowa.edu)

References

Hide All
1. Chappell, CL, et al. Infectivity of Cryptosporidium parvum in healthy adults with pre-existing anti-C. parvum serum immunoglobulin G. American Journal of Tropical Medicine and Hygiene 1999; 60: 157164.
2. Hunter, PR, et al. Sporadic cryptosporidiosis case-control study with genotyping. Emerging Infectious Diseases 2004; 10: 12411249.
3. Hunter, PR, et al. Health sequelae of human cryptosporidiosis in immunocompetent patients. Clinical Infectious Diseases 2004; 39: 504510.
4. Chen, XM, et al. Cryptosporidiosis. New England Journal of Medicine 2002; 346: 17231731.
5. Clark, DP. New insights into human cryptosporidiosis. Clinical Microbiology Reviews 1999; 12: 554563.
6. Hunter, PR, Nichols, G. Epidemiology and clinical features of cryptosporidium infection in immunocompromised patients. Clinical Microbiology Reviews 2002; 15: 145154.
7. Yoder, JS, Beach, MJ. Cryptosporidium surveillance and risk factors in the United States. Experimental Parasitology 2010; 124: 3139.
8. Centers for Disease Control and Prevention (CDC).Outbreak of cryptosporidiosis associated with a splash park – Idaho, 2007. Morbidity and Mortality Weekly Report 2009; 58: 615618.
9. Barwick, RS, et al. Surveillance for waterborne-disease outbreaks – United States, 1997–1998. Morbidity and Mortality Weekly Report (CDC Surveillance Summary) 2000; 49: 121.
10. Centers for Disease Control and Prevention (CDC).Cryptosporidiosis outbreaks associated with recreational water use – five states, 2006. Morbidity and Mortality Weekly Report 2007; 56: 729732.
11. Boehmer, TK, et al. Cryptosporidiosis from a community swimming pool: outbreak investigation and follow-up study. Epidemiology and Infection 2009; 137: 16511654.
12. Insulander, M, et al. An outbreak of cryptosporidiosis associated with exposure to swimming pool water. Scandinavian Journal of Infectious Diseases 2005; 37: 354360.
13. Causer, LM, et al. An outbreak of Cryptosporidium hominis infection at an Illinois recreational waterpark. Epidemiology and Infection 2006; 134: 147156.
14. Centers for Disease Control and Prevention (CDC).Protracted outbreaks of cryptosporidiosis associated with swimming pool use – Ohio and Nebraska, 2000. Morbidity and Mortality Weekly Report 2001; 50: 406410.
15. Sorvillo, FJ, et al. Swimming-associated cryptosporidiosis. American Journal of Public Health 1992; 82: 742744.
16. McAnulty, JM, Fleming, DW, Gonzalez, AH. A community-wide outbreak of cryptosporidiosis associated with swimming at a wave pool. Journal of the American Medical Association 1994; 272: 15971600.
17. Messner, MJ, Chappell, CL, Okhuysen, PC. Risk assessment for Cryptosporidium: a hierarchical Bayesian analysis of human dose response data. Water Research 2001; 35: 39343940.
18. Jokipii, L, Jokipii, AM. Timing of symptoms and oocyst excretion in human cryptosporidiosis. New England Journal of Medicine 1986; 315: 16431647.
19. Valderrama, AL, et al. Multiple risk factors associated with a large statewide increase in cryptosporidiosis. Epidemiology and Infection 2009; 137: 17811788.
20. Roy, SL, et al. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. Journal of Clinical Microbiology 2004; 42: 29442951.
21. McCullagh, P, Nelder, JA. Generalized Linear Models, 2nd edn. London: Chapman and Hall, 1989.
22. Turabelidze, G, et al. Communitywide outbreak of cryptosporidiosis in rural Missouri associated with attendance at child care centers. Archives of Pediatrics and Adolescent Medicine 2007; 161: 878883.
23. Centers for Disease Control and Prevention (CDC). Cryptosporidiosis outbreak response and evaluation, 5 June 2009 (http://www.cdc.gov/crypto/pdfs/core_guidelines.pdf). Accessed 17 December 2009.
24. Centers for Disease Control and Prevention (CDC). Hyperchlorination to kill Cryptosporidium. 1 August 2008 (http://www.cdc.gov/healthyswimming/pdf/Hyperchlorination_to_kill_Cryptosporidium.pdf). Accessed 17 December 2009.
25. Kaye, D. CDC says there are ways to reduce enteric pathogen transmission in swimming pools. Clinical Infectious Diseases 2001; 33: i.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed