Skip to main content Accessibility help
×
Home

Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme

  • W. J. Love (a1), K. A. Zawack (a2) (a3), J. G. Booth (a2), Y. T. Gröhn (a4) and C. Lanzas (a1)...

Abstract

Antimicrobials play a critical role in treating cases of invasive non-typhoidal salmonellosis (iNTS) and other diseases, but efficacy is hindered by resistant pathogens. Selection for phenotypical resistance may occur via several mechanisms. The current study aims to identify correlations that would allow indirect selection of increased resistance to ceftriaxone, ciprofloxacin and azithromycin to improve antimicrobial stewardship. These are medically important antibiotics for treating iNTS, but these resistances persist in non-Typhi Salmonella serotypes even though they are not licensed for use in US food animals. A set of 2875 Salmonella enterica isolates collected from animal sources by the National Antimicrobial Resistance Monitoring System were stratified in to 10 subpopulations based on serotype and host species. Collateral resistances in each subpopulation were estimated as network models of minimum inhibitory concentration partial correlations. Ceftriaxone sensitivity was correlated with other β-lactam resistances, and less commonly resistances to tetracycline, trimethoprim-sulfamethoxazole or kanamycin. Azithromycin resistance was frequently correlated with chloramphenicol resistance. Indirect selection for ciprofloxacin resistance via collateral selection appears unlikely. Density of the ACSSuT subgraph resistance aligned well with the phenotypical frequency. The current study identifies several important resistances in iNTS serotypes and further research is needed to identify the causative genetic correlations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: W. J. Love, E-mail: wjlove@ncsu.edu

References

Hide All
1.Collignon, PC, et al. (2016) World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clinical Infectious Disease 63, 10871093.
2.Love, WJ, et al. (2016) Markov networks of collateral resistance: National Antimicrobial Resistance Monitoring System surveillance results from Escherichia coli isolates, 2004–2012. PLoS Computational Biololgy 12, e1005160. doi: 10.1371/journal.pcbi.1005160.
3.Zawack, K, et al. (2016) Monitoring antimicrobial resistance in the food supply chain and its implications for FDA policy initiatives. Antimicrobial Agents and Chemotherapy 60, 53025311.
4.Mouton, JW. (2013) Controlling antimicrobial resistance: interfering in the process of natural selection. Antimicrobial Resistance and Infection Control 2, 32.
5.Read, AF and Woods, RJ (2014) Antibiotic resistance management. Evolution, Medicine, and Public Health 1, 147.
6.zur Wiesch, PA, et al. (2011) Population biological principles of drug-resistance evolution in infectious diseases. The Lancet Infectious Diseases 11, 236247.
7.Canton, R and Ruiz-Garbojosa, P (2011) Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology 11, 477485.
8.Hunter, JC and Francois Watkins, LK (2018) Salmonellosis (Nontyphoidal). In Brunette, GW, (ed.). CDC Health Information for International Travel. New York, NY: Oxford University Press. Available at https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal (accessed 10 April 2018).
9.Hohmann, EL (2001) Nontyphoidal salmonellosis. Clinical Infectious Disease 32, 263269. doi: 10.1086/318457.
10.Uzzau, S, et al. (2000) Host adapted serotypes of Salmonella enterica. Epidemiology and Infection 125, 229255.
11.Bush, L and Perez, M Nontyphoidal Salmonella infections. In Porter, RS and Kaplan, JL (eds). The Merck Manual Professional Edition. Available at https://www.merckmanuals.com/professional/infectious-diseases/gram-negative-bacilli/nontyphoidal-salmonella-infections (accessed 10 April 2018).
12.Onwuezobe, IA, Oshun, PO and Odigwe, CC (2012) Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. In Onwuezobe, IA (ed.). Cochrane Database of Systematic Reviews. Sommerset, NJ: John Wiley & Sons, Ltd, doi:10.1002/14651858.CD001167.pub2. Available at http://cochranelibrary-wiley.com/doi/10.1002/14651858.CD001167.pub2/full (accessed 10 April 2018).
13.Hoelzer, K, Moreno Switt, AI and Wiedmann, M (2011) Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research 42, 34.
14.Kariuki, S, et al. (2015) Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33(Suppl. 3), C21C29.
15.Jones, TF, et al. (2008) Salmonellosis outcomes differ substantially by serotype. Journal of Infection Disease 198, 109114.
16.Lanridge, G, et al. (2009) Nontyphoidal Salmonella serovars cause different degrees of invasive disease globally. Journal of Infectious Disease 199, 602603.
17.US Food & Drug Administration (2017) Approved Animal Drug Products. Rockville, MD: Center for Veterinary Medicine.
18.Arlet, G, et al. (2006) Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes and Infection 8, 19451954.
19.US Food & Drug Administration (2014) National Antimicrobial Resistance Monitoring System Integrated Report. Available at https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM528861.pdf (Accessed 1 September 2017).
20.US Food & Drug Administration. The National Antimicrobial Resistance Monitoring System. Available at http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm (Accessed 1 September 2017).
21.National Antimicrobial Resistance Monitoring System (NARMS) Data. NARMS Now: Interactive Data Displays. Available at http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm416741.htm (Accessed 1 September 2017).
22.Cohen, J (1983) The cost of dichotomization. Applied Psychological Measurement 7, 249253.
23.Beckstead, JW and Beckie, TM (2010) How much information can metabolic syndrome provide? An application of information theory. Medical Decision Making 31, 7992.
24.Clinical and Laboratory Standards Institute (2017) M100-S27. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute.
25.Sjölund-Karlsson, M, et al. (2011) Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrobial Agents Chemotherapy 55, 39853989.
26.Hastie, T, Tibshirani, R and Friedman, J (2013) Undirected graphical models. In The Elements of Statistical Learning, 2nd edn. New York: Springer, pp. 625648.
27.Daniel, WW (1990) Applied Nonparametric Statistics, 2nd edn. Boston: PWS-Kent Publishing.
28.Friedman, J, Hastie, T and Tibshirani, R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics (Oxford, England) 9, 432441.
29.Liu, H, et al. (2012) The nonparanormal skeptic. In Langford, J and Pineau, J (eds). Proceedings of the 29th International Conference on Machine Learning. Edinburgh: International Machine Learning Society, pp. 14151422.
30.Liu, H, Roeder, K, Wasserman, L. (2010) Stability approach to regularization selection (StARS) for high dimensional graphical models. In Lafferty, JD, et al. (eds). Advances in Neural Information Processing Systems 23. Vancouver: Neural Information Processing Systems Foundation, Inc., pp. 14321440.
31.Briggs, CE and Fratamico, PM (1999) Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrobial Agents and Chemotherapy 43, 846849.
32.R Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://R-project.org/.
33.Olson, AB, et al. (2007) Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13. BMC Microbiology 7, 87.
34.Olsen, JE, et al. (1994) Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. Journal of Medical Microbiology 40, 1522.
35.Sukhnanand, S, et al. (2005) DNA sequence-based subtyping and evolutionary analysis of selected Salmonella enterica serotypes. Journal of Clinical Microbiology 43, 36883698.
36.Bolton, LF, et al. (1999) Detection of multidrug-resistant Salmonella enterica serotype typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. Journal of Clinical Microbiology 37, 13481351.
37.Paterson, DL and Bonomo, RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Review 18, 657686.
38.Bauernfeind, A, et al. (1996) Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrobial Agents and Chemotherapy 40, 221224.
39.Hu, H, et al. (2005) Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics (Oxford, England) 21(Suppl. 1), i213i221.
40.Anscombe, FJ (1973) Graphs in statistical analysis. American Statistics 27, 1721.
41.Fithian, W, Sun, D and Taylor, J (2014) Optimal Inference after Model Selection. arXiv:1410.2597 [math.ST]. Available at https://arxiv.org/abs/1410.2597.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Love et al. supplementary material
Love et al. supplementary material 1

 Unknown (1.7 MB)
1.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed