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Abstract

Antimicrobials play a critical role in treating cases of invasive non-typhoidal salmonellosis
(INTS) and other diseases, but efficacy is hindered by resistant pathogens. Selection for
phenotypical resistance may occur via several mechanisms. The current study aims to identify
correlations that would allow indirect selection of increased resistance to ceftriaxone, cipro-
floxacin and azithromycin to improve antimicrobial stewardship. These are medically import-
ant antibiotics for treating iNTS, but these resistances persist in non-Typhi Salmonella
serotypes even though they are not licensed for use in US food animals. A set of 2875
Salmonella enterica isolates collected from animal sources by the National Antimicrobial
Resistance Monitoring System were stratified in to 10 subpopulations based on serotype
and host species. Collateral resistances in each subpopulation were estimated as network mod-
els of minimum inhibitory concentration partial correlations. Ceftriaxone sensitivity was cor-
related with other fB-lactam resistances, and less commonly resistances to tetracycline,
trimethoprim-sulfamethoxazole or kanamycin. Azithromycin resistance was frequently
correlated with chloramphenicol resistance. Indirect selection for ciprofloxacin resistance
via collateral selection appears unlikely. Density of the ACSSuT subgraph resistance aligned
well with the phenotypical frequency. The current study identifies several important resis-
tances in iNTS serotypes and further research is needed to identify the causative genetic
correlations.

Introduction

Antimicrobial resistance (AMR) surveillance programmes perform antimicrobial susceptibility
tests on pathogens and indicator bacteria. Surveillance programmes monitor changes in the
prevalence of non-susceptible isolates for a given drug-bacteria combination over time and
space. This information is valuable to guide antimicrobial stewardship recommendations,
evaluate AMR interventions and support policy decisions such as removal of drugs that are
critically important for human medicine from animal agriculture use [1-3]. Antimicrobial sur-
veillance data are multivariate as each isolate is tested against multiple antimicrobial drugs in a
panel. Analysis of the associations among phenotypical resistances at the bacterial population
level can provide additional information on the changes of the multidrug nature of bacteria.
However, this information is not commonly sought in AMR surveillance programmes. We
recently developed a network-based approach to analyse and report the associations among
phenotypical resistances [2]. Representing the correlated resistances as graphical models pro-
vides an intuitive method for communicating how the resistances interact and a framework for
analysis.

Antimicrobial use is one of the most important selection pressure for phenotypical resist-
ance traits, and this selection may occur via several mechanisms [4-6]. Repeated use of a spe-
cific drug will likely result in an increase of the mean minimum inhibitory concentration
(MIC) to the drug in a population of bacteria where the wild type is more sensitive. This selec-
tion is referred to as direct selection since the selected trait is the one responsible for improved
survivorship in the environment, e.g. repeated tetracycline use directly selects for increased
tetracycline MICs over time. Other AMR phenotypes may be selected indirectly because
they are correlated with directly selected traits. A variety of mechanisms, including linked
genes and mutations to shared antimicrobial targets, can result in correlated phenotypical
resistance traits. These collateral resistances can allow for the indirect selection of MDR bac-
teria by use of a single antimicrobial drug [7]. For example, if tetracycline and ampicillin MICs
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are positively correlated in a population of bacteria, tetracycline
use in this population may indirectly select for higher ampicillin
MICs. Graphical models of AMR surveillance data can highlight
the potential for indirect phenotype selections in the modelled
population.

Non-typhoidal salmonellosis (NTS) is a leading cause of bac-
terial gastroenteritis worldwide [8]. NTS is caused by serotypes of
Salmonella enterica ssp. enterica other than S. typhi and S. para-
typhi, which cause typhoid fever [9]. Some of these serotypes are
host-adapted to production animals, e.g. S. dublin in cattle, and
others can subclinically infect multiple hosts, e.g. S. enteritidis
and S. typhimurium [10]. Contact with contaminated animal
food products is the most common source of infection. Many
cases of NTS are self-limiting and antimicrobial administration
is contra-indicated [11, 12]. However, treatment with antimicro-
bials can be life-saving in severe or invasive NTS (iNTS) cases.
Ciprofloxacin, ceftriaxone or azithromycin are the drugs most
commonly prescribed to treat iNTS [12-14]. Cases of iNTS are
more likely to occur in patients who are very young, very old or
immunosuppressed. The risk of iNTS also appears to vary by
aetiologic serotype; invasive disease has been reported to occur
in 5-10% of patients infected with the most common serotypes
S. typhimurium and S. enteritidis, but iNTS has been reported
in 60-70% of patients infected with S. dublin [15, 16].

Since NTS is typically attributed to non-human sources, the
use of antimicrobials in food animals has the potential to increase
the prevalence of resistant NTS organisms. Ciprofloxacin, ceftri-
axone and azithromycin are not approved for use in livestock in
the USA, but resistance to these drugs may still occur via indirect
selection. Enrofloxacin, ceftiofur and erythromycin are licensed
for use in production medicine and are functionally similar to
ciprofloxacin, ceftriaxone and azithromycin, respectively [17].
The use of these licensed drugs may indirectly select for clinically
important resistance traits via cross-resistance, the collateral
resistance attributed to a single gene or mutation that increases
the MIC for several related drugs [7]. The collateral resistance
induced by the extended-spectrum S-lactamase CMY-2 is another
example of cross-resistance [18]. This enzyme is encoded by
blacyy.» and is effective against many f-lactams antimicrobials
including, ceftiofur and ceftriaxone, third-generation cephalos-
porins. In populations where blacyy., is variably present, ceftio-
fur and ceftriaxone MICs will be correlated. The use of ceftiofur
will then select for isolates carrying blacyry_, and indirectly select
for increased ceftriaxone resistance. Co-resistance is a distinct
source of collateral resistance that occurs when two or more resist-
ance genes tend to be transmitted together. Integrons in some
NTS serotypes contain both blacymy., and tetA, a tetracycline
resistance gene [7]. These integrons are a source of co-resistance
and the use of tetracycline in populations where these integrons
occur may indirectly select for increased ceftriaxone MICs.

The objectives of the current study are to map the phenotyp-
ical patterns of collateral resistance in several subpopulations of
NTS organisms and to identify specific antimicrobial drugs that
may indirectly select for increased resistance to the antimicrobials
used to treat NTS. Phenotypical patterns of collateral resistance
were estimated using graphical models. The graphical models’
structures were then used to select a set of general linear models
for the medically important resistances: azithromycin, ceftriaxone
and ciprofloxacin. The linear models were used to quantify the
strength of the collateral resistances for medically important
resistances.
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Materials and methods
Data sources

Salmonella isolate data were taken from the National Antimicrobial
Resistance Monitoring System (NARMS) [19, 20]. The current
study used data from NTS organisms isolated from animal carcasses
and retail meat during 2011-2013. Isolates obtained prior to 2011
are omitted because the drug panels changed in 2011 and older
data may not be representative of more contemporary Salmonella
populations. Data were available for 5384 isolates of Salmonella
spp. across 110 distinct serotypes from chicken, cattle, swine or tur-
key sources during this period [21]. The data were divided into sub-
populations defined by host species and serotype. Subpopulations
were selected if data were available for 75 or more isolates. For brev-
ity, each subpopulation was assigned an abbreviation comprised of
the first two letters of the host species and the first three letters of
the serotype. Ten subpopulations containing a total of 2875 isolates
(534% of total sampled) were identified for further evaluation
(Table 1). Serotypes Enteritidis and Typhimurium are most com-
monly associated with NTS gasteroenteritis in human patients.
Therefore, the subpopulations of S. enteritidis isolated from chick-
ens (ChEnt) and S. typhimurium in cattle (CaTyp) and in chick-
ens (ChTyp) were selected. These serotypes were isolated from
other sources, but were not numerous enough to be included in
the study. Subpopulations of S. kentucky from chickens
(ChKen), S. montevideo from cattle (CaMon), S. hadar from tur-
keys (TuHad) and S. anatum from swine (SwAna) were selected
as the most common serotypes isolated from the respective non-
human sources. Salmonella dublin from cattle (CaDub) and S.
heidelberg from chickens (ChHei) and turkeys (TuHei) were
selected because these serotypes have been reported to cause
iNTS in more than 10% of human cases in the USA [15].
Other highly invasive serotypes such as Newport and
Choleraesuis were isolated from animal sources during the
NARMS study, but the data available for these subpopulations
in the NARMS study contained very few isolates for analysis.

Table 1. Summary of non-typhoidal Salmonella enterica isolates, stratified by
host and serotype, from the NARMS study collected during 2011-2013,
including subscript (s), size of the subpopulation (ns) and the reported
invasive index

Inv. index

Host Serotype s ns (%) [16]
Chicken (2525 Enteritidis ChEnt 494 6.7
isolates total) .

Typhimurium ChTyp 427 5.7

Heidelberg ChHei 203 13.4

Kentucky ChKen 931 0.0
Cattle (1402 Dublin CaDub 98 64.0
isolates total) .

Typhimurium CaTyp 89 5.7

Montevideo CaMon 355 5.2
Turkey (752 Heidelberg TuHei 82 13.4
isolates total)

Hadar TuHad 112 4.0
Swine (705 Anatum SwAna 84 2.6

isolates total)

A total of 5384 isolates were collected from all animal sources during this time period, and
2875 isolates were included in the study.
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Phenotypical resistance was measured as MIC, and MIC
results for 21 antimicrobials were available from the selected iso-
lates. However, MICs were only consistently available for the fol-
lowing 15 phenotypical resistance traits: ampicillin (AMP),
amoxicillin plus clavulanic acid (AMC), cefoxitin (FOX), ceftriax-
one (AXO), ceftiofur (TIO), streptomycin (STR), gentamicin
(GEN), kanamycin (KAN), nalidixic acid (NAL), ciprofloxacin
(CIP), sulfisoxazole (FIS), trimethoprim plus sulfmethoxazole
(COT), tetracycline (TET), azithromycin (AZI) and chloram-
phenicol (CHL). Antimicrobials were classified based on the
chemical structure and target of action (Table 2). While it is com-
mon practice to interpret MIC values using established break-
points which define sensitive, resistant and occasionally
intermediate ranges, interpreted MIC values were not used in
the analysis in the current study. Instead, the graphical and linear
models were fit using log,(MIC) values. Categorisation has been
shown to significantly decrease statistical power, resulting reduced
sensitivity of an analysis to detect correlation [22, 23]. Preserving
susceptibility results in their continuous form also allows for the
detection of variance when all MICs are below published break-
points, which would result in monotonically ‘sensitive’ results
(Figs 1-4).

The prevalence of each resistant trait, i.e. the proportion of iso-
lates with an MIC which met or exceeded published breakpoints,
in each subpopulation is reported to provide a context for inter-
pretation [24]. The Clinical and Laboratory Standards Institute
(CLSI) has not published breakpoints for azithromycin resistance
for S. enterica isolates other than Typhi, so suggested epidemiolo-
gic cut-offs for azithromycin were used instead [25].

Resistance relationship network estimation

Resistance relationship networks, or R-nets, were used to estimate
correlations between AMR traits in the selected subpopulations.
These networks are Markov random fields (MRF), a type of
undirected graphical model that can be estimated from empirical
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data [2, 26]. A graphical model consists of two sets: a vertex set V
and an edge set E containing the connections between the ele-
ments of V. An R-net’s vertex set V represents the k antimicrobial
drugs in the resistance panel. The edge set E represents the m
non-zero partial correlations between resistances. The partial cor-
relation between vertices i and j (w;;) is the standardised covari-
ance after controlling for the remaining resistances in the panel.
The R-nets provide a profile of the correlated phenotypical resist-
ance traits in a population, and strongly connected sets of resis-
tances represent traits that can be selected together via indirect
selection. For example, if FIS, STR and CHL were all connected
in the network, it would be expected that chloramphenicol use
would select for increased CHL directly and increased STR and
FIS indirectly [2]. An R-net R, was estimated separately for each
of the 10 selected subpopulation s.

Spearman’s rank correlation matrices were estimated for each
subpopulation and transformed to partial correlation matrices
using the graphical LASSO, an L; regularisation method [27-29].
Regularisation methods use penalties to select sparser or simpler
models; in the graphical LASSO, higher values of the L, penalty 1
reduce more ®;; to zero and produces sparser networks [28]. In
the current study, the stability approach to regularisation selection
(StARS) was used to select an appropriate A for each subpopulation
[30]. Stability scores for candidate penalties from A =0.05 to 1=
0.50, in 0.05 increments, were evaluated for each subpopulation s.
For each subpopulation s and for each candidate A, 100 subsamples
of s selected without replacement of size 7\/ ns were used to estimate
StARS stability statistics D for that subpopulation. The smallest 1
that had a Dy < 0.05 was selected to estimate R,.

Analysis

Univariate descriptive statistics for log,(MIC) values were esti-
mated to better understand the subpopulations’ susceptibility
characteristics. The structures of R, were compared in several
ways. The maximum number of edges in a graph is M, = xC,

Table 2. Antimicrobial descriptions, classes and resistance breakpoints for Salmonella enterica [24, 25]

Antimicrobial Abbrev Description Breakpoint (mg/dl) Drug class
Ampicillin AMP Aminopenicilln 232 B-lactams (BL)
Amoxicllin + Clav. acid AMC Augmented aminopenicillin >32

Ceftriaxone AXO Third-generation cephalosporin >4

Cefoxitin FOX Cephamycin >32

Ceftiofur TIO Third-generation cephalosporin >8

Streptomycin STR Aminoglycoside >64 Aminoglycosides (AG)
Gentamicin GEN Aminoglycoside >16

Kanamycin KAN Aminoglycoside >64

Nalidixic acid NAL Quinolone >32 Fluoroquinolones (FQ)
Ciprofloxacin CIP Fluoroquinolone >1

Sulfisoxazole FIS Sulfonimide monodrug >512 Folate pathway inhibitor (FPI)
Trimethoprim + Sulfamethoxazole coT Augmented sulfonamide >4

Tetracycline TET Tetracycline >16 Tetracycline (TC)
Chloramphenicol CHL Phenicol >32 Phenicol (Ph)
Azithromycin AZI Azalide >16 Macrolide (MLS)
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Fig. 1. The R-nets for four NTS serotypes collected from chicken by the USDA and FDA during the 2011-2013 NARMS study. Vertex size is scaled to the proportion of
clinical resistance, and vertex colour represents the class of the respective drug resistance (see Table 2). Line colour and weight represent the sign and strength,

respectively, of the partial correlations w;;.

=k(k — 1)/2 and network density /n describes the size of the net-
work as a proportion of the network’s maximum size (m=m/
Mmay)- In each R, the proportion of edges present between verti-
ces representing resistances to the drugs of the same class
(matched-class edges), e.g. AXO-AMP, and edges joining resis-
tances to different drug classes (cross-class), e.g. CHL-AXO,
was compared using a y” test for homogeneity.

In addition to the density of the complete R-nets, two import-
ant induced subgraphs were also evaluated. The first included all
five S-lactam resistances: AMP, AMC, FOX, AXO and TIO. These
drugs share a common structure and target, in some cases allow-
ing resistance mechanisms to be broadly effective against many
drugs in the class. The second induced subgraph of AMP, CHL,
STR, FIS and TET was also constructed. The co-occurrence of
these five phenotypical resistances is frequently seen in DT104
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Typhimurium isolates. The ‘ACSSuT’ resistance genes (blacarpa»
floR, aadA2, sull and tetA, respectively) are known to reside on
a chromosomal type 1 integron [31].

Linear models for the medically important resistances AXO,
AZI and CIP were created based on the R-net structures to par-
ameterise the relationships between these and other resistances.
These models provide unbiased estimates of the magnitude of
the relationships between the resistances of interest. The linear
models were of the general form log,(Y) =L +Z Bxlog.(Xs)
where Y € {AXO, AZI, CIP} in R, X; is the set of resistances adja-
cent to Y in Ry and Sy represents the average change in Y asso-
ciated with a one dilution, or twofold, increase in X,. For
example, if CIP was only adjacent to NAL in R;, the correspond-
ing model for ciprofloxacin would be log,(CIP)=p,+
Prnarlogo(NAL), and Byar=1.5 would indicate that a twofold
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Fig. 2. The R-nets for three NTS serotypes collected from cattle by the USDA and FDA during the 2011-2013 NARMS study. Vertex size is scaled to the proportion of
clinical resistance, and vertex colour represents the class of the respective drug resistance (see Table 2). Line colour and weight represent the sign and strength,

respectively, of the partial correlations w;.

increase in nalidixic acid resistance was on average associated with

2'?=28-fold or 180% increase in ciprofloxacin MICs.
Quantile—quantile or Q-Q plots were used to evaluate if the mod-
els’ standardised residuals conformed well to a normal distribu-
tion. Coefficients from linear models that had standardised
residuals that did not conform to the standard normal distribu-
tion were reported, but not interpreted. Adjusted R* values were
used to assess the fit of each linear model.

Analyses were performed using R and network structure esti-
mate was performed using the ‘glasso’ package [28, 32].

Results
General descriptive statistics

No clear patterns across the subpopulations were noted in the
MIC descriptive statistics (Supplementary Tables S1-S3). Overall,
AMP, FIS, STR and TET were the most prevalent resistances and
CHL resistance was uncommon except in Typhimurium and
Dublin isolates from cattle. Resistance to azithromycin, defined by
the epidemiologic cut-off, was noted only in one Kentucky isolate.

https://doi.org/10.1017/50950268818000833 Published online by Cambridge University Press

Isolates of the most common serotypes in the respective hosts gen-
erally had low resistance prevalence to all antimicrobials, and the
subpopulation of Dublin isolates had the highest prevalence of
resistance for most antimicrobials.

Network structures

The most stable network structures were found 0.1 <A4<0.3
(Table 3). The number of edges in the most stable networks ran-
ged from 12 edges in the Enteritidis isolates from chicken, to 44
edges in the Dublin isolates from cattle, with respective densities
Mchgnt = 11.4% (Achgne = 0.25) t0 Micapuy = 41.9% (Acapub = 0.25).
Over the 10 subpopulations, /1 was not significantly correlated
with A (Spearman’s p =0.11, P=0.77). With k=15 drugs in the
panel, there were ;5C,=105 unique edges which could be
observed, and 83 of those edges appeared in at least one R
Fifteen of the 105 possible edges were matched-class edges and
all matched-class edges appeared in two or more R,. Many of
the edges most frequently observed over all 10 subpopulations
were matched-class edges. The 10 edges joining pairs of
B-lactams were the most common matched-class edges observed
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and each of these 10 edges were present in five or more subpopu-
lations. The STR-GEN edge appeared in six networks, while
KAN-STR and KAN-GEN were only noted in four networks.
The NAL-CIP edge was seen in six networks and the FIS-COT
edge was only noted in three networks. The most common cross-
class edges were STR-FIS, STR-TET and CHL-AZI, which each
appeared in six subpopulations. Among the medically important
resistances for iNTS, AXO was most frequently correlated with
increased resistances to other B-lactams; AZI was linked to TET,
CHL and CIP; CIP was most commonly linked to NAL and
AZI; and COT had few links, with FIS being the most common.

Linear models

The linear models fit for the medically important resistances
AXO, AZI and CIP showed various patterns (Tables 4-6, respect-
ively). Instances where the vertex representing a medically
important resistance was not adjacent to any other vertices, the
linear model consisted only of the intercept; these models were
omitted for brevity. The AXO linear models tended to have
very high adjusted R* values (adj. R*>0.9), many of the coeffi-
cients for other B-lactam resistances were significant, and several
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other coefficients for non-f-lactam MICs also appeared to be
influential on AXO. The adjusted R values in the linear models
for AZI and CIP tended to be much lower, with a few exceptions.

The Q-Q plots of the linear models’ standardised residuals are
available in the Supplementary Materials (SF-1 through SF-23).
Standardised residuals from the AXO linear models from the sub-
populations CaDub, CaTyp, ChHei, ChTyp, TuHad and TuHei
showed the expected quantile distribution, while models from
CaMon, ChEnt and ChKen had a large number of standardised
residuals that fell outside the expected normal distribution. All
of the Q-Q plots for the AZI linear models showed standardised
residuals with substantial deviation from the expected distribu-
tion. The residuals for the CIP models generally conformed well
to the expected normal distribution. The violations of the normal-
ity assumption, where they occurred, tended to occur in the tails
and led more than 5% of the standardised residuals to fall outside
of the (=2, 2) interval.

The coefficients for NAL in the linear models for log,(CIP) were
significant when they were included. Other coefficients in the CIP
models tended to be small and only AZI in Enteritidis from chicken
was significant and had a significant coefficient of meaningful size
(Bazr = 0.36, 28% increase in CIP when AZI doubles, P < 0.005).
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Fig. 4. Summation of adjacency matrices of R..
Elements of the matrix represent the frequency of the
edges corresponding to row and column. Row and col-
umn labels are coloured to correspond to the class of
the respective drug resistance (see Table 2). Elements
enclosed by solid lines in the matrix represent edges
that join resistances to drugs of the same class
(matched-class edges) and other elements represent
edges between resistances to drugs of different classes
(cross-class edges). Rows representing resistances to
drugs used to treat NTS are highlighted in grey.

Table 3. Summary of R-nets for NTS subpopulations, included StARS-selected penalty (1), network size (m), network density (m) and the number of edges
connecting resistances to drugs of the same class or between different classes (Mmatchea aNd Mross, respectively), and the P value for y? test (df=1) comparing
the proportions of matched-class edges present to cross-class edges present

Host Serotype n A m (m) Mmatched s P
Chicken Enteritidis 494 0.25 12 (11.4%) 5] 7 <0.005
Chicken Typhimurium 427 0.15 29 (27.6%) 12 17 <0.005
Chicken Heidelberg 931 0.30 23 (21.9%) 11 12 <0.005
Chicken Kentucky 203 0.15 20 (19.0%) 12 8 <0.005
Cattle Dublin 89 0.30 34 (32.4%) 14 20 <0.005
Cattle Typhimurium 98 0.25 44 (41.9%) 11 33 <0.005
Cattle Montevideo 855 0.30 24 (22.9%) 9 15 <0.005
Turkey Heidelberg 112 0.30 27 (25.7%) 10 17 <0.005
Turkey Hadar 82 0.25 19 (18.1%) 10 9 <0.005
Swine Anatum 84 0.10 26 (24.8%) 4 22 0.85
Discussion

The R-nets presented provide insights about collateral resistance
patterns in 10 subpopulations of seven serotypes from four food
animal species in the NARMS study. The R-nets demonstrated a
variety of patterns and densities across the subpopulations. The
range of penalties selected by the StARS method, 0.1<A1<0.3,

https://doi.org/10.1017/50950268818000833 Published online by Cambridge University Press

was similar to the penalty selected in a previous study [2]. While
MRE density is a function of A, /n and A were not significantly cor-
related across serotypes (p=0.11, P=0.77), so differences in Ry
could be attributable to other characteristics of the subpopulations.

The R-net for S. enteritidis in chickens was very sparse, con-
taining only 12 edges. Salmonella enteritidis is a clonal serotype
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Table 4. Linear models of ceftriaxone resistance (AXO) given R, and adjusted R? statistics

Host Serotype log,(AXO) = RZy

Chicken Enteritidis — 1.67 +0.22*log,(AMC) + 0.63*log,(T10) — 0.17*log,(NAL) 0.65

Chicken Typhimurium —2.18 — 0.35*log »(AMP) +0.82*log ,(AMC) +0.33*log ,(FOX) + 0.42*log ,(TIO) 0.97

Chicken Kentucky —1.91 — 0.06log »(AMP) +0.83*log ,(AMC) +0.07*log ,(FOX) + 0.22*log ,(TIO) 0.91

Chicken Heidelberg — 2.45 — 0.35" log, (AMP) + 0.75* log,(AMC) + 0.45" log, (FOX) 0.97
+0.09 log, (KAN) — 0.01 log,(TET) + 0.35" log,(TIO)

Cattle Typhimurium —1.30 + 0.20" log,(AMC) + 0.81* log, (FOX) — 0.09 log,(CHL) 0.96
— 0.26log,(STR) + 0.02 log, (TET) + 0.49* log, (TIO)

Cattle Dublin — 1.80 — 0.29" log, (AMP) + 0.46" log,(AMC) + 0.36™ log,(FOX) 0.94
+ 0.78" log,(TI0) + 0.08" log, (GEN)

Cattle Montevideo — 4.66 + 0.40" log, (AMP) + 0.32* log,(AMC) + 0.03 log,(CHL) 0.98
+ 0.02 log,(COT) + 0.01 log, (FIS) 4 0.51* log,(STR)

Turkey Hadar —3.13+0.63*log »(FOX) +0.68*log ,(TIO) +0.19*log »(KAN) 0.96

Turkey Heidelberg 1.84 — 0.01 log,(AMC) + 0.74" log, (FOX) + 0.61" log,(TIO) 0.84

+ 0.66 log, (CIP) + 0.18* log,(COT) — 0.02 log,(GEN) + 0.09 log,(KAN)

Subpopulations in which AXO was not adjacent to other resistances are omitted for brevity.

*P<0.05.

with little genetic variability and isolates are typically pansuscep-
tible [33-35]. The minimal genetic variation in this population is
likely responsible for the low standard deviations in Enteritidis
isolates log,(MIC) values, which in turn limited the covariance
between the traits. Hence, the sparse structure of Repgy, is likely
the product of the serotype’s clonal population.

Other networks, e.g. Rchkens Rrunad @and Rcppeid> had larger
log,(MIC) standard deviations, but were still relatively sparse
(m < 0.25) due to few non-zero partial correlations. The sparsity
indicates that the phenotypical resistances in these subpopulations
tend to be conditionally independent, instead of simply lacking
genetic variation. The edges in these R-nets were disproportion-
ately matched-class edges (Fisher’s P <0.01) which could be
attributable to cross-resistance from common genes. For example,
B-lactam resistance genes, such as blatgy; or blacyy ., provide
cross-resistance to multiple S-lactam drugs, leading to denser
Rgp subgraphs. Otherwise, the co-resistances that require inherit-
ance of multiple genes providing resistance to drugs of different
classes are uncommon in these subpopulations.

The densest R-nets, Reapu, and Rearyp, had large MIC standard
deviations and large partial correlations among the phenotypical

resistances. These subpopulations have the highest risk of indirect
selection producing multiple increased phenotypical resistances in
response to exposure to a single drug. The risk of selecting for
MDR isolates of serotype Dublin is of particular concern due to
its high invasive index [15, 16]. The prevalence of other dense net-
works, Rcamon and Rsyana, had much lower resistance prevalence,
demonstrating that the resistance defined by breakpoints may not
be a sensitive metric for identifying correlated phenotypical traits.
The high density of the R-nets in the serotypes from cattle, particu-
larly Rcapus and Reqryp indicate that these are the serotypes most
likely to evolve MDR phenotypes via indirect selection, though
this is certainly not the only mechanism that could lead to MDR
selection in these subpopulations. These networks had high dens-
ities despite relatively high penalties (15> 0.25).

It is not clear why these serotypes in cattle had denser net-
works, but some hypotheses can be made. Antimicrobials belong-
ing to several classes included in the susceptibility panels,
including aminopenicillins, third-generation cephalosporins, sul-
fonamides and tetracyclines, are used to treat diarrhoea and
respiratory disease in beef and dairy cattle and mastitis in dairy
cows. The variety of therapeutic antimicrobial drugs used generate

Table 5. Linear models of azithromycin resistance (AZI) given R, and adjusted R? statistics

Host Serotype log ,(AZl) = RZg
Chicken Enteritidis 2.31+0.21*log ,(CHL) +0.15*log ,(CIP) 0.14
Chicken Typhimurium 1.08 +0.21*log »(CHL) +0.13*log ,(NAL) +0.03*log »(TIO) 0.14
Chicken Kentucky —0.03 +0.61*log ,(CHL) +0.09*log ,(TET) 0.35
Cattle Typhimurium 2.54 +0.11log ,(CIP) + 0.04log ,(COT) + 0.09log »(NAL) 0.25
Turkey Hadar 0.18 +0.47*log ,(CHL) +0.22*log ,(NAL) 0.15
Turkey Heidelberg 4.02 +0.21*log »(CHL) +0.37log ,(CIP) +0.10log ,(COT) 0.35
Swine Anatum 1.80 +0.21*log ,(CHL) + 0.03log ,(CIP) — 0.08*log ,(FIS) + 0.07log ,(GEN) 0.18

Subpopulations in which AZI was not adjacent to other resistances are omitted for brevity.

*P<0.05.
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Table 6. Linear models of ciprofloxacin resistance (CIP) given R, and adjusted R? statistics
Host Serotype log ,(CIP) = Rgdj
Chicken Enteritidis —7.25+0.08*log ,(AMP) +0.36*log ,(AZI) +0.49*log ,(NAL) 0.19
Chicken Typhimurium —6.07 — 0.08"log »(NAL) 0.03
Cattle Typhimurium —7.25+0.24log ,(AZI) +0.10log ,(COT) +0.74*log ,(NAL) 0.72
Cattle Dublin —7.11+0.87*log ,(NAL) 0.86
Turkey Hadar —6.21+0.21*log ,(NAL) 0.10
Turkey Heidelberg —6.00+0.01log ,(AXO) +0.05log ,(AZI) +0.03log ,(COT) 0.16
Swine Anatum —9.13 4 0.07 log, (AMP) + 0.25 log, (AZI) + 0.21 log, (CHL) 0.49

+ 0.04 log, (FIS) -+ 0.06 log,(GEN) -+ 1.18* log, (NAL)

Subpopulations in which CIP was not adjacent to other resistances are omitted for brevity.
*P<0.05.

a spectrum of selection pressures which in turn may play some
role in the evolution of the correlated phenotypical resistances.
Another explanation could be that beef and dairy cattle tend to
be harvested at older ages than the other production animal spe-
cies, allowing individuals more opportunities to receive thera-
peutic antimicrobials and more time for Salmonella to exchange
genetic material with other organisms in the environment. Since
the NARMS data combine isolates of both beef and dairy cattle
into a single category, the correlations seen could also be con-
founded by differences in production systems, but this is unlikely
given the extensive correlations.

The induced subgraph Rg represents broad resistance to
B-lactam drugs, and as expected Ry, was particularly dense, with
mgr, > 80% in all Ry except Rchgne and Rgywana. The prevalence of
isolates fully f-lactam-resistant isolates exceeded 25% prevalence
in only four of the 10 subpopulations (Table 7). The networks
based on continuous MICs may be more sensitive for detecting
clusters correlated resistances. The induced subgraph Racss,t repre-
sents the co-resistance set expected with the DT104 integron.
Generally, this subgraph was less dense than Rg in all subpopula-
tions, with only Rcapyp and Reqryp having imacssyr > 50% density.
The prevalence of ACSSuT isolates was also uncommon except in
cattle isolates of Typhimurium (40.4%) and Dublin (51.0%).

The consistency of the AZI-CHL edge in the R-nets may indi-
cate that phenotypical chloramphenicol resistance may be an

important source of collateral selection for phenotypical azithro-
mycin resistance in chickens, poultry and swine, but the edge did
not appear in NTS subpopulations from cattle. The adjusted par-
tial R” statistics for CHL, when present, were the higher than any
other predictors but these estimates may not be reliable since the
AZI models generally showed violations of the normality assump-
tion for parametric linear models. However, in both cases, there
appears to be a possibly influential effect. While chloramphenicol
is not used in food animal production in the USA, florfenicol is
licensed for use in these species. The phenicol-specific efflux
pump floR provides cross-resistance to both chloramphenicol
and florfenicol in S. enterica [36]. Even if the co-resistance
between chloramphenicol and azithromycin does not push latter
above the epidemiologic cut point, selection of higher AZI values
increases the likelihood that additional mutations or genetic
exchanges will result in isolates resistant to azithromycin.
Phenotypical ceftriaxone resistance was found to be strongly
correlated with other B-lactam resistances. A number of molecular
mechanisms can provide cross-resistance to multiple S-lactam
drugs, but the collateral resistances here may be more likely attrib-
utable to penicillin-binding protein mutations than extended
spectrum f-lactamases (ESBLs) [37]. Genes for ESBLs will
increase AXO but will not increase AMC since ESBLs are inacti-
vated by clavulanic acid. Cross-tabulation of AXO and AMC
showed that elevated AXO values only occurred in isolates with

Table 7. Comparison of prevalence of f-lactam pan-resistant isolates and the corresponding induced subgraph (mg) and of prevalence of ACSSuT phenotype and

the corresponding induced subgraph

Host Serotype n np (%) Mg Nacssut (%) MacssuT
Chickens Enteritidis 494 2 (0.4) 4 0 (0) 1
Chickens Typhimurium 427 117 (27.4) 10 0 (0) 3
Chickens Kentucky 931 121 (13.0) 10 2(0.2) 1
Chickens Heidelberg 203 13 (6.4) 9 5 (2.5) 2
Cattle Typhimurium 89 28 (31.5) 36 (40.4) 9
Cattle Dublin 98 58 (59.2) 10 50 (51.0) 7
Cattle Montevideo 355 11 (3.1) 9 11 (3.1) 3
Turkeys Hadar 112 5(3.6) 8 0 (0) 1
Turkeys Heidelberg 82 22 (26.8) 8 3(3.7) 4
Swine Anatum 84 0 (0) 2 0 (0) 4
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elevated AMC, indicating the mechanisms increasing AXO in
these isolates were not inactivated by clavulanic acid. Other pos-
sible explanations for these results include the presence of
B-lactamases that are not inactivated by clavulanic acid, e.g.
CMY-2, or the presence of other resistance mechanisms insensi-
tive to clavulanic acid in addition to ESBLs [38]. Cross-class edges
associated with AXO were varied. From the linear models where
the Q-Q plots suggested the models’ residuals were normally dis-
tributed, the cross-class terms associated with increased AXO
were COT in RTuHei (ﬁCOT =0.18, P= 001), KAN in RTuHad
(Bxan =0.19, P<0.005) and GEN in Reapus (Bgen = 0.08, P=
0.03), hence the use of trimethoprim-sulfamethoxazole and ami-
noglycosides may select for increased ceftriaxone MICs in non-
typhoidal Salmonella isolates in cattle and poultry. The large
adjusted R* values for the AXO linear models could indicate
that indirect selection may be an important factor in maintaining
ceftriaxone resistance in these N'TS serotypes.

Ciprofloxacin resistance was most frequently correlated with
NAL, the other quinolone antibiotic in the panel, and typically
conditionally independently of other resistances. The CIP model
for Rswana was difficult to interpret: as previously discussed CIP
was highly connected in the network, but only one coefficient
was significant (fyar =1.18, P <0.005). This could be attributed
to low statistic power due the limited sample size (#syana =84)
or the limited range of CIP values. Overall, given the small num-
ber of isolates with CIP near or exceeding its breakpoint and weak
or absent edges with other resistances, indirect selection for cipro-
floxacin resistance does not appear to be a major concern.

In multiple instances, vertices had one or more edges even
though no isolates had MIC values that met or exceeded clinical
breakpoints. Also, Rchyei and Reamon had relatively high densities
but resistance was infrequent. In these examples, the correlations
are being driven by the variation in MICs below defined break-
points, which has several important implications. Had network
topology been estimated using dichotomised MICs results, i.e.
MICs interpreted as sensitive or resistant, susceptibilities with
monotonically sensitive responses would have variances equal to
zero. In turn, these transformations resulting in monotonic vari-
ables would have undefined covariances and correlations with
other traits. These cases highlight the value of estimating the net-
work structures from continuous MICs, instead of the more clin-
ically useful dichotomised MICs results. In particular, correlations
between AZI and other resistances are concerning, despite finding
only one isolate in any subpopulation to be azithromycin-resistant
since selection for higher AZI values increases the likelihood of
later genetic changes leading to resistance to azithromycin.

The density of the induced subgraphs for the ACSSuT resis-
tances aligned well with the frequency of the ACSSuT resistance
phenotype. Cattle isolates of Typhimurium and Dublin most fre-
quently demonstrated this five-way resistant phenotype (40% and
51%, respectively) and had the densest subgraphs (90% and 70%,
respectively). The penta-resistant phenotype was much less com-
mon in the other serotypes, which also had four or fewer edges in
the corresponding subgraph. Several serotypes had intermediate
subgraph densities and very few penta-resistant isolates. In these
serotypes, one or more AMR traits, typically chloramphenicol,
had substantial covariance to detect an edge but the high values
did not meet or exceed the breakpoints. This demonstrates that
the R-nets are able to detect AMR patterns, even if not all resist-
ance traits exceed the clinical breakpoints. A future research
objective is to identify dense-induced subgraphs that represent
important AMR patterns via algorithms such as CODENSE [39].
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The linear models provide a convenient method to parameter-
ise the observed MICs in the collateral resistances. The networks
and linear models provide complementary information: the
graphical models provide a holistic view of population, while
the linear models focus on medically important phenotypical
resistance traits. General linear models are more likely familiar
to many researchers. The f coefficients are not influenced by
the L, penalisation and are therefore more comparable between
models. On the other hand, many of the Q-Q plots showed
that the linear models’ residuals were not normally distributed,
indicating the models’ parameter estimates and P-values may
not be reliable [40]. The terms in the linear models were selected
based on the networks’ structures, and several coefficients were
small (8<0.10, 7% increase in MIC) and were not significant
(P>0.05). With some exceptions, the corresponding partial corre-
lations were also relatively weak (|o;| < 0.10), but it is difficult to
interpret the |w;| since these values were biased toward 0 as a
result of the penalisation. This is consistent with the StARS meth-
od’s strategy to identify a superset of edges that is likely to contain
all important edges in graph, at the expense of including some
that are unimportant. Another possible cause of the disagreement
between the linear and network models is that the former assumes
a linear relationship between log,(MIC) values and the latter is built
on non-parametric rank correlations without specified relationships.
Evaluation of model fit in this case, including interpretation of P
values, is difficult because the fit is assessed using the same data
used to select the model [41]. Ideally, separate datasets would be
used to select the model and assess the model’s fit, but this approach
was not feasible due to the limited sample size for many of the sub-
populations. The small sample size of some subpopulations, such as
TuHei (n,=82) and SwAna (n,=84), may be sensitive to a small
number of isolates with high influence, producing less robust esti-
mated correlation matrices. However, unlike more ordinary least
squares methods that rely on hypothesis testing model selection
using the graphical LASSO is not driven by estimated standard
errors and is independent of sample size, it is unlikely the results
have problem with underfitting. This property of the graphical
LASSO is also what allows estimation where ng <., which
would not be possible using ordinary least squares methods.

The results of the current study are largely consistent with
what is currently understood about these AMR traits in NTS.
However, the quantitative approach used here provides a more
formal method for studying collateral resistance in these subpo-
pulations and other bacterial populations. The methods applied
to the current study allow the network structures and the pair-
wise effect measures to be estimated with minimal oversight.
Knowledge about the aetiologic agents and their genetics is crit-
ical for the interpretation of the networks produced, but this is
similarly true for the interpretation of any statistic model.

Conclusions

The R-nets generated in the current study provide an initial
screening for important collateral resistances in 10 subpopula-
tions of NTS organisms from animal sources. Due to the density
and strength of the R-net edges in the isolates from cattle, these
appeared to have the greatest potential for selection of multiple
resistance traits from individual antibiotic use. The partial corre-
lations used in the network models estimated the consistency of
MIC relationships, and the linear models provided a deeper evalu-
ation of the collateral resistances of interest. The secondary linear
models provide estimates of collateral resistance strength, though
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the assumptions of linear relationships and normally distributed
data underlying parametric regression may not be met.
Resistance to azithromycin was linked with chloramphenicol
resistance in 6/10 of the R-nets, and may be influenced by the
use of florfenicol in relevant species. Ceftriaxone resistance
appeared to be most impacted by the use of other S-lactams,
though trimethoprim-sulfamethoxazole, streptomycin and kana-
mycin may select for increased AXO in some cases. Resistance
to ciprofloxacin did not appear to be correlated with other resist-
ance traits outside of nalidixic acid, which is not used in food ani-
mal medicine. The R-nets are a useful method for studying and
monitoring collateral resistances in pathogen populations using
data currently produced by AMR surveillance systems.
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