Skip to main content Accessibility help
×
Home

Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection

  • Y. J. KIM (a1), S. I. KIM (a1), Y. R. KIM (a1), K. W. HONG (a1), S. H. WIE (a1), Y. J. PARK (a2), H. JEONG (a1) and M. W. KANG (a1)...

Summary

Carbapenem-resistant Acinetobacter baumannii (CRAB) are an increasing infectious threat in hospitals. We investigated the clinical epidemiology of CRAB infections vs. colonization in patients, and examined the mechanisms of resistance associated with elevated minimum inhibitory concentrations (MICs) for carbapenems. From January to June 2009, 75 CRAB strains were collected. CRAB infection was significantly associated with malignancy and a high APACHE II score. The most dominant resistance mechanism was ISAba1 preceding OXA-51, producing strains with overexpression of efflux pump. Strains carrying blaOXA-23-like enzymes had higher carbapenem MICs than those carrying blaOXA-51-like enzymes; however, the presence of multiple mechanisms did not result in increased resistance to carbapenems. There was no difference in the resistance mechanisms in strains from infected and colonized patients. The majority of strains were genetically diverse by DNA macrorestriction although there was evidence of clonal spread of four clusters of strains in patients.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanisms and risk factors for infection
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr M. W. Kang, Banpodong 505, Seochogu, Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea (137-701). (Email: infect@catholic.ac.kr)

References

Hide All
1.Bogaerts, P, et al. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. Journal of Clinical Microbiology 2006; 44: 41894192.
2.Bou, G, et al. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of beta-lactamases. Journal of Clinical Microbiology 2000; 38: 32993305.
3.Perez, F, et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 2007; 51: 34713484.
4.Poirel, L, Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clinical Microbiology and Infection 2006; 12: 826836.
5.Bratu, S, et al. Correlation of antimicrobial resistance with beta-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrobial Agents and Chemotherapy 2008; 52: 29993005.
6.Gur, D, et al. Increasing carbapenem resistance due to the clonal dissemination of oxacillinase (OXA-23 and OXA-58)-producing Acinetobacter baumannii: report from the Turkish SENTRY Program sites. Journal of Medical Microbiology 2008; 57: 15291532.
7.Lee, K, et al. VIM- and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerging Infectious Diseases 2003; 9: 868871.
8.Garner, JS, et al. CDC definitions for nosocomial infections, 1988. American Journal of Infectious Control 1988; 16: 128140.
9.Turton, JF, et al. Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. Journal of Clinical Microbiology 2006; 44: 29742976.
10.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing.Eighteenth Informational Supplement M100-S18. CLSI, Wayne, PA, USA, 2008.
11.Tygacil package insert. Philadelphia, PA: Wyeth Pharmaceuticals Inc., 2005.
12.Seifert, H, et al. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. Journal of Clinical Microbiology 2005; 43: 43284335.
13.Woodford, N, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents 2006; 27: 351353.
14.Turton, JF, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiology Letters 2006; 258: 7277.
15.Ellington, MJ, et al. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. Journal of Antimicrobial Chemotherapy 2007; 59: 321322.
16.Carlone, GM, et al. Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. Journal of Clinical Microbiology 1986; 24: 330332.
17.Pannek, S, et al. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. Journal of Antimicrobial Chemotherapy 2006; 57: 970974.
18.Shi, WF, et al. Inhibitory effects of reserpine and carbonyl cyanide m-chloro-phenylhydrazone on fluoroquinolone resistance of Acinetobacter baumannii. Chinese Medical Journal (English edition) 2005; 118: 340343.
19.Lin, L, Ling, BD, Li, XZ. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. International Journal of Antimicrobial Agents 2009; 33: 2732.
20.Munoz-Price, LS, Weinstein, RA. Acinetobacter infection. New England Journal of Medicine 2008; 358: 12711281.
21.Livermore, DM. The impact of carbapenemases on antimicrobial development and therapy. Current Opinion in Investigational Drugs 2002; 3: 218224.
22.Mussi, MA, et al. CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for L-ornithine uptake. FEBS Letters 2007; 581: 55735578.
23.Siroy, A, et al. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 2005; 49: 48764883.
24.Mugnier, PD, et al. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerging Infectious Diseases 2010; 16: 3540.
25.Villegas, MV, et al. Dissemination of Acinetobacter baumannii clones with OXA-23 Carbapenemase in Colombian hospitals. Antimicrobial Agents and Chemotherapy 2007; 51: 20012004.
26.Mussi, MA, Limansky, AS, Viale, AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrobial Agents and Chemotherapy 2005; 49: 14321440.
27.Wieczorek, P, et al. Multidrug resistant Acinetobacter baumannii – the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochemistry Cytobiology 2008; 46: 257267.
28.Magnet, S, Courvalin, P, Lambert, T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrobial Agents and Chemotherapy 2001; 45: 33753380.
29.Peleg, AY, Adams, J, Paterson, DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 2007; 51: 20652069.
30.Maragakis, LL, Perl, TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clinical Infectious Diseases 2008; 46: 12541263.
31.Baran, G, et al. Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. International Journal of Infectious Diseases 2008; 12: 1621.
32.Lautenbach, E, et al. Epidemiology and impact of imipenem resistance in Acinetobacter baumannii. Infection Control and Hospital Epidemiology 2009; 30: 11861192.
33.Jang, TN, et al. Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case-control study. Journal of Hospital Infection 2009; 73: 143150.
34.Lee, SO, et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrobial Agents and Chemotherapy 2004; 48: 224228.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed