Skip to main content Accessibility help
×
Home

Taphonomy of plant fossils from the Viséan of East Kirkton, West Lothian, Scotland

  • R. E. Brown (a1) (a2), A. C. Scott (a1) and T. P. Jones (a1) (a2)

Abstract

The Viséan sequence at East Kirkton contains abundant plant fossils which show a wide range of preservation states. Most of the plant fragments are allochthonous, but stigmarian rootlets are found in situ at the top of the sequence and form mats near the base, where they are preserved in cherts. Axes have commonly been reworked within tuffs at the base. The majority of the plants are preserved as fragmentary compressions, although mineral replacement of the organic matter has occurred in some places. A number of woody axes which have been permineralised by phases of calcite and silica are found in the limestone and tuffs of the sequence. These axes often show complex mineralisation patterns and can occur at the centre of stromatolitic nodules. Some are well preserved and appear to have been permineralised rapidly whereas others show evidence of decay prior to calcite growth or degradation after stromatolite developed. Fusain (fossil charcoal) is abundant in the sequence, in addition to fusain transition fossils caused by partial charring, which suggests the occurrence of palaeowildfires in the area. The plant fossils have been assigned to a number of categories (some of which are new), based on their varied preservation states.

Copyright

References

Hide All
Bateman, R. M. 1991. Palaeoecology. In Cleal, C. J. (Ed.) Plant fossils in geological investigation: The Palaeozoic, 34116. Chichester: Ellis Horwood.
Bateman, R. M. & Rothwell, G. W. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts. TRANS R SOC EDINBURGH: EARTH SCI 81, 127–59.
Bateman, R. M. & Scott, A. C. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments and palaeoecology. TRANS R SOC EDINBURGH: EARTH SCI 81, 161–94.
Carson, G. A. 1991. Silicification of fossils. In Allison, P. A. & Briggs, D. E. G. (Eds) Taphonomy: releasing the data locked in the fossil record, 455–99. New York: Plenum Press.
Folk, R. L., Chafetz, H. S. & Tiezzi, P. A. 1985. Bizarre forms of depositional and diagenetic calcite in hot springs travertines, Central Italy. In Schneidermann, N. & Harris, P. M. (Eds) Carbonate Cements, 349–69. SOC ECON PALEONTOL MINER 36.
Fournier, R. O. 1985. The behaviour of silica in hydrothermal solutions. In Berger, B. R. & Bethke, P. M. (Eds) Geology and geochemistry of epithermal systems, 4562. SOC ECON GEOL REV ECON GEOL 2.
Harris, T. M. 1958. Forest fire in the Mesozoic. J ECOL 46, 447–53.
Durant, G. P. 1994. Volcanogenic sediments of the East Kirkton Limestone, Viséan, of West Lothian, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 84, 203207.
Jones, T. P. & Chaloner, W. G. 1991. Fossil charcoal, its recognition and palaeoatmospheric significance. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL (Global and Planetary Change Section) 97, 3950.
Jones, T. P., Scott, A. C. & Cope, T. M. 1991. Reflectance measurements and the temperatures of formation of modern charcoals and implications for studies of fusain. BULL SOC GEOL FRANCE 162, 193200.
Jones, T. P., Scott, A. C. & Mattey, D. P. 1993. Investigations of ‘fusain transition fossils’ from the Lower Carboniferious: comparisons with modern partially charred wood. INT J COAL GEOL 22, 3759.
Leo, R. F. & Barghoorn, E. S. 1876. Silicification of wood. BOT MUS LEAFL HARV UNIV 25, 147.
McGinnes, E. A., Kandeel, S. A. & Szopa, P. 1971. Some structural changes observed in the transformation from wood to charcoal. WOOD AND FIBRE 3, 7783.
Meyers, W. L. 1977. Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. SEDIMENTOLOGY 24, 75105.
Rex, G. M. 1986. The preservation and palaeoecology of the Lower Carboniferous silicified plant deposits at Esnost, near Autun, France. GEOBIOS 19, 773800.
Rex, G. M. & Scott, A. C. 1987. The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. GEOL MAG 124, 4366.
Rolfe, W. D. I., Durant, G. P., Fallick, A. E., Hall, A. J., Large, D. J., Scott, A. C., Smithson, T. R. & Walkden, G. M. 1990. An early terrestrial biota preserved by Visean vulcanicity in Scotland. In Lockley, M. G. & Rice, A. (Eds) Volcanism and fossil biotas, 1324. GEOL SOC AM SPEC PAP 244.
Rolfe, W. D. I., Durant, G. P., Baird, W. J., Chaplin, C., Paton, R. L. & Reekie, R. J. 1994. The East Kirkton Limestone, Viséan, West Lothian, Scotland: introduction and stratigraphy. TRANS R SOC EDINBURGH: EARTH SCI 84, 177188.
Schopf, J. M. 1975. modes of fossil preservation. REV PALAEOBOT PALYNOL 20, 2753.
Scott, A. C. 1989. Observations on the nature and origin of fusain. INT J COAL GEOL 12, 443–5.
Scott, A. C., Brown, R., Galtier, J. & Meyer-Berthaud, B. 1994. Fossil plants from the Viséan of East Kirkton, West Lothian, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 84, 249260.
Scott, A. C. & Jones, T. P. in press. The nature and influence of fire in Carboniferous ecosystems. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL.
Shute, C. H. & Cleal, C. J. 1987. Palaeobotany in museums. GEOL CURATOR 4, 553–59.
Walkden, G. M., Irwin, J. R. & Fallick, A. E. 1994. Carbonate spherules and botryoids as lake floor cements in the Lower Carbonferous East Kirkton Limestone of West Lothian, Scotland. TRANS R SOC EDINBURGH: EARTH SCI 84, 213221.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed